
Skylines

Yufei Tao

ITEE
University of Queensland

INFS4205/7205, Uni of Queensland Skylines



Today we will discuss problems closely related to the topic of
multi-criteria optimization, where one aims to identify objects that strike
a good balance—often optimal in some sense—among multiple
dimensions.

Our focus will be placed on how to find such objects efficiently. In

particular, we will consider points that are indexed by an R-tree, and

study algorithms that can leverage the R-tree to reduce cost effectively.

INFS4205/7205, Uni of Queensland Skylines



Monotonically Increasing Functions

Let p be a d-dimensional point in Rd . Let f : Rd → R a function
that calculates a score f (p) for p. We say that f is monotonically
increasing if the score increases when any coordinate of p increases.

INFS4205/7205, Uni of Queensland Skylines



Top-1 Search

Let us first look at one of the most natural operations in multi-criteria
optimization.

Let P be a set of d-dimensional points in Rd . Given a monotonically
increasing function f , a top-1 query finds the point in P that has
the smallest score.

In the special case where multiple points have the smallest score,
all of them should be returned.

f is often referred to as the preference function of the query.

Without loss of generality, let us assume that the coordinates of all
the points are positive (think: why is this a fair assumption?).

INFS4205/7205, Uni of Queensland Skylines



Example

If f (x , y) = x + y , the top-1 point is p8.

20 4 6 8 10

2

4

6

8

10
p1

p2

p3

p4

p5

p6p7

p8
p9

p10

p11

p12

p13

x

y

INFS4205/7205, Uni of Queensland Skylines



Applications of Top-1 Search

“Find the hotel that minimizes price + distance (to the beach).”

“Find the second-handed car that minimizes price + 0.1 · mileage.”

“Find the interviewee that maximizes 0.4· education + 0.4·
experience + 0.2· personality.”

...

INFS4205/7205, Uni of Queensland Skylines



Top-1 Search is NN Search in Disguise!

Assuming that the dataset P is indexed by an R-tree, we can answer a
top-1 query by directly applying a nearest neighbor algorithm discussed
before. Specifically, the top-1 result is precisely the NN of the origin of
the data space (i.e., the query point) according to the “distance
function” f .

Think: What is the mindist of an MBR to the query point?

20 4 6 8 10

2

4

6

8

10
p1

p2

p3

p4

p5

p6

p7

p8
p9

p10

p11

p12

p13

r1

r2

r3

r4 r5

r6

r7 p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 p13

r1 r2 r3 r4 r5

r6 r7

u1 u2 u3 u4 u5

u6 u7

u8

INFS4205/7205, Uni of Queensland Skylines



Drawback of Top-1 Search—The Preference Function

In general, it is difficult to decide which preference function f to use.

For example, assume that the x-dimension corresponds to the price of a
hotel and the y-dimension to its distance to the beach. Why is
f (x , y) = x + y a good function to use? Why not 2x + y , or something
more complex like

√
x + y2?

20 4 6 8 10

2

4

6

8

10
p1

p2

p3

p4

p5

p6p7

p8
p9

p10

p11

p12

p13

x

y

INFS4205/7205, Uni of Queensland Skylines



To remedy the drawback, we need to do away with preference
functions. But then we fall into a dilemma—how do we return
“top-1” points?

The skyline operator achieves the purpose with an interesting idea.
Instead of returning only 1 object, how about returning a small set
of objects that is guaranteed to cover the result of any top-1 query
(i.e., regardless of the preference function).

INFS4205/7205, Uni of Queensland Skylines



Dominance

A point p1 dominates p2 if the coordinate of p1 is smaller than or
equal to p2 in all dimensions, and strictly smaller in one dimension.

20 4 6 8 10

2

4

6

8

10
p1

p2

p3

p4

p5

p6p7

p8
p9

p10

p11

p12

p13

x

y

For example, p8 dominates p6, which dominates p5. It is clear that

dominance is transitive.

INFS4205/7205, Uni of Queensland Skylines



Skyline Search

Let P be a set of d-dimensional points in Rd . The skyline of P is
the set of points in P that are not dominated by others.

20 4 6 8 10

2

4

6

8

10
p1

p2

p3

p4

p5

p6p7

p8
p9

p10

p11

p12

p13

x

y

The skyline is {p1, p8, p9, p12}.

INFS4205/7205, Uni of Queensland Skylines



Now we can talk about how the skyline remedies the aforementioned
drawback of top-1 search.

Theorem: For any monotonically increasing function, a top-1 point
is definitely in the skyline.

Proof: Suppose that this is not true, and that there exists a function f

for which a top-1 point p is not in the skyline. This means that p is

dominated by at least another point p′. The monotonicity of f tells us

that f (p′) < f (p), which contradicts the fact that p is a top-1 point.

INFS4205/7205, Uni of Queensland Skylines



Recall that our goal is to return a small set of points that is guaranteed
to cover the top-1 result of any preference function. The next theorem
states that the skyline is indeed the smallest subset.

Theorem: Every point in the skyline is definitely a top-1 point of
some monotonically increasing function.

The proof is not required, but the instructor will outline the idea behind.

INFS4205/7205, Uni of Queensland Skylines



Next we will proceed to discuss how to find the skyline efficiently using
an R-tree. We will consider two scenarios:

What if NN search is the only available operator on the R-tree
(plus, of course the “standard” insertion/deletion operators)?

Think: Why could this happen?
We will discuss how to use NN search as a black box to find
the skyline.

What if we are allowed to design an algorithm of our own on the
R-tree?

We will come up with another algorithm that solves the
problem optimally.

INFS4205/7205, Uni of Queensland Skylines



First Algorithm: Using NN Search as a Black Box

Lemma: Let p be the (Euclidean) NN of the origin of the data
space, among all the points in the dataset P. Then, p must be in
the skyline of P.

Proof: Suppose that this is not true. Then, there exists another point p′

that dominates p. This, however, means that p′ must be closer to the
origin than p, creating a contradiction.

INFS4205/7205, Uni of Queensland Skylines



NN Search as a Black Box

Motivated by the previous observation, we can find the skyline by
repeating the next two operations until the R-tree is empty:

Find the NN p of the origin of the data space. Include p into the
skyline.

Delete p from the tree, as well as all the points that are dominated
by p.

Think: Why is the algorithm correct?

INFS4205/7205, Uni of Queensland Skylines



Example

0 2 4 6 8 10

2

4

6

8

10
p1

p2

p3

p4

p5

p6

p7

p8

p9 p10

p11

p12

p13

0 2 4 6 8 10

2

4

6

8

10
p1

p2

p9 p10

p12

The first NN query finds p8. The figure on the right shows the dataset

after the corresponding deletions.

INFS4205/7205, Uni of Queensland Skylines



Example

0 2 4 6 8 10

2

4

6

8

10
p1

p2

p9 p10

p12

0 2 4 6 8 10

2

4

6

8

10
p1

p2

p12

The second NN query finds p9. The figure on the right shows the dataset

after the corresponding deletions.

INFS4205/7205, Uni of Queensland Skylines



Example

0 2 4 6 8 10

2

4

6

8

10
p1

p2

p12

The third NN query finds p1 and p12. The dataset becomes empty after
corresponding deletions.

Final skyline point = {p8, p9, p1, p12}.

INFS4205/7205, Uni of Queensland Skylines



This previous algorithm must access all the points in the dataset
(why?). The next algorithm remedies the defect by accessing (typ-
ically) only a part of the dataset.

INFS4205/7205, Uni of Queensland Skylines



Second Algorithm: Branch and Bound Skyline (BBS)

The BBS algorithm can be thought of a variation of the BF algorithm for
NN search. It accesses the nodes of the R-tree in ascending order of their
mindists from the origin. Different from NN search, however, once an
MBR in its entirety is dominated by a skyline point already found, it can
be pruned.

Next we will illustrate the algorithm through an example.

INFS4205/7205, Uni of Queensland Skylines



BBS

First, we access the root, and put the MBRs there in a sorted list H,
namely, H = {(r7,

√
10), (r6,

√
26)}. Note that the sorting key of its

MBR is its mindist to the origin.

20 4 6 8 10

2

4

6

8

10
p1

p2

p3

p4

p5

p6

p7

p8
p9

p10

p11

p12

p13

r1

r2

r3

r4 r5

r6

r7 p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 p13

r1 r2 r3 r4 r5

r6 r7

u1 u2 u3 u4 u5

u6 u7

u8

INFS4205/7205, Uni of Queensland Skylines



BBS

The algorithm then visits node u7, after which
H = {(r3,

√
13), (r6,

√
26), (r4,

√
40), (r5,

√
82)}.

20 4 6 8 10

2

4

6

8

10
p1

p2

p3

p4

p5

p6

p7

p8
p9

p10

p11

p12

p13

r1

r2

r3

r4 r5

r6

r7 p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 p13

r1 r2 r3 r4 r5

r6 r7

u1 u2 u3 u4 u5

u6 u7

u8

INFS4205/7205, Uni of Queensland Skylines



BBS

We now visit u3 which is a leaf node. Insert all the points therein into H,
which becomes:
H = {(p8,

√
18), (r6,

√
26), (p9,

√
29), (r4,

√
40), (p7,

√
45), (r5,

√
82)}.

20 4 6 8 10

2

4

6

8

10
p1

p2

p3

p4

p5

p6

p7

p8
p9

p10

p11

p12

p13

r1

r2

r3

r4 r5

r6

r7 p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 p13

r1 r2 r3 r4 r5

r6 r7

u1 u2 u3 u4 u5

u6 u7

u8

INFS4205/7205, Uni of Queensland Skylines



BBS

Now we remove p8 from H. This is the first skyline point found.

H is now {(r6,
√

26), (p9,
√

29), (r4,
√

40), (p7,
√

45), (r5,
√

82)}.

20 4 6 8 10

2

4

6

8

10
p1

p2

p3

p4

p5

p6

p7

p8
p9

p10

p11

p12

p13

r1

r2

r3

r4 r5

r6

r7 p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 p13

r1 r2 r3 r4 r5

r6 r7

u1 u2 u3 u4 u5

u6 u7

u8

INFS4205/7205, Uni of Queensland Skylines



BBS

Next, access u6, and update H to
{(p9,

√
29), (r4,

√
40), (p7,

√
45), (r2,

√
61), (r1,

√
65), (r5,

√
82)}.

20 4 6 8 10

2

4

6

8

10
p1

p2

p3

p4

p5

p6

p7

p8
p9

p10

p11

p12

p13

r1

r2

r3

r4 r5

r6

r7 p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 p13

r1 r2 r3 r4 r5

r6 r7

u1 u2 u3 u4 u5

u6 u7

u8

INFS4205/7205, Uni of Queensland Skylines



BBS

Remove from H the next point p9, which is the second skyline point
found.

H is now {(r4,
√

40), (p7,
√

45), (r2,
√

61), (r1,
√

65), (r5,
√

82)}.

20 4 6 8 10

2

4

6

8

10
p1

p2

p3

p4

p5

p6

p7

p8
p9

p10

p11

p12

p13

r1

r2

r3

r4 r5

r6

r7 p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 p13

r1 r2 r3 r4 r5

r6 r7

u1 u2 u3 u4 u5

u6 u7

u8

INFS4205/7205, Uni of Queensland Skylines



BBS

The next MBR r4 in H can be directly discarded, because its lower-left
corner is dominated by a skyline point p8. This implies that no points in
r4 can possibly be in the skyline.

Following the same reasoning, both of the next point p7 and the
following MBR r2 are also discarded.

Currently H = {(r1,
√

65), (r5,
√

82)}.
Skyline points found so far = {p8, p9}.

20 4 6 8 10

2

4

6

8

10
p1

p2

p3

p4

p5

p6

p7

p8
p9

p10

p11

p12

p13

r1

r2

r3

r4 r5

r6

r7 p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 p13

r1 r2 r3 r4 r5

r6 r7

u1 u2 u3 u4 u5

u6 u7

u8

INFS4205/7205, Uni of Queensland Skylines



BBS

Next, access the leaf node u1, after which H becomes
H = {(p3,

√
80), (p1,

√
82), (r5,

√
82), (p2,

√
104)}.

20 4 6 8 10

2

4

6

8

10
p1

p2

p3

p4

p5

p6

p7

p8
p9

p10

p11

p12

p13

r1

r2

r3

r4 r5

r6

r7 p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 p13

r1 r2 r3 r4 r5

r6 r7

u1 u2 u3 u4 u5

u6 u7

u8

The next point p3 is discarded. Then, we come to p1, which is added to

the skyline, which is now {p1, p8, p9}.

INFS4205/7205, Uni of Queensland Skylines



BBS

Now H = {(r5,
√

82), (p2,
√

104)}. The rest of the algorithm proceeds in
the same manner. We discover the 4th skyline point p12 in r5.

20 4 6 8 10

2

4

6

8

10
p1

p2

p3

p4

p5

p6

p7

p8
p9

p10

p11

p12

p13

r1

r2

r3

r4 r5

r6

r7 p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 p13

r1 r2 r3 r4 r5

r6 r7

u1 u2 u3 u4 u5

u6 u7

u8

INFS4205/7205, Uni of Queensland Skylines



Pseudocode of BBS

algorithm BBS

1. insert the MBR of the root into a sorted list H
/* entries in H are sorted by their mindists to the origin */

2. SKY = ∅ /* current result */
3. while H is not empty do
4. remove the the first entry e from H
5. if e is the MBR of a node u
6. if no point in SKY dominates the lower-left corner e then
7. visit u and insert all MBRs/points there into H
8. else /* e is a point */
9. if no point in SKY dominates e then
10. add e to SKY

INFS4205/7205, Uni of Queensland Skylines



Optimality of BBS

BBS is optimal, i.e., it accesses the least number of nodes among all
algorithms that correctly finds the skyline using the same R-tree (without
modifying the structure). To prove this, let us define the search region as
the union of the points in Rd that are not dominated by any skyline
point. For example, in our previous example, the search region is the
shaded area below:

20 4 6 8 10

2

4

6

8

10
p1

p8
p9

p12

It is easy to see that any correct algorithm must access all the nodes

whose MBRs intersect the search region.

INFS4205/7205, Uni of Queensland Skylines



Optimality of BBS

We can show that BBS accesses only the nodes whose MBRs intersect
the search region. Assume, for contradiction, that the algorithm needs to
visit a node u whose MBR r is disjoint with the region.

It follows that a skyline point p dominates the lower-left corner of r .

Thus, p has a smaller mindist (a.k.a. distance) to the origin than r .

The sequence of points/nodes processed by BBS is in ascending
order of mindist to the origin.

Prove this by yourself.

Hence, p is processed before u.

However, once p is processed, it enters the skyline, making it
impossible for the algorithm to visit u.

INFS4205/7205, Uni of Queensland Skylines


