
Nearest Neighbor Search

Yufei Tao

ITEE
University of Queensland

INFS4205/7205, Uni of Queensland Nearest Neighbor Search



In this lecture, we will study a new problem called nearest neighbor

search, which plays an important role in a great variety of applications.

Our discussion will also introduce two methods: the branch-and-bound

and the best first techniques, both of which are generic algorithmic

paradigms useful in many scenarios.

INFS4205/7205, Uni of Queensland Nearest Neighbor Search



Nearest Neighbor Search

Let P be a set of d-dimensional points in Rd . The (Euclidean)
nearest neighbor (NN) of a query point q ∈ Rd is the point p ∈ P
that has the smallest Euclidean distance to q.

Given a query point q, an NN query returns the NN(s) of q. Note
that multiple points can have the smallest distance to q, in which
case they are all nearest neighbors and should be reported.

Note:

The Euclidean distance between p and q is the length of the line
segment connecting p and q.

We denote the Euclidean distance between p and q as ‖p, q‖.

INFS4205/7205, Uni of Queensland Nearest Neighbor Search



Example

20 4 6 8 10

2

4

6

8

10
p1

p2

p3

p4

p5

p6p7

p8
p9

p10

p11

p12

p13

q

The NN of q is p7.

INFS4205/7205, Uni of Queensland Nearest Neighbor Search



Applications

“Find the McDonald that is nearest to me”.

“Find the customer profile in the database that is most similar to
the profile of the new customer”.

“Retrieve the image from the database that is most similar to the
one given by the user”.

...

INFS4205/7205, Uni of Queensland Nearest Neighbor Search



If no pre-processing is allowed on P, we must scan the entire P to answer
a NN query. Query efficiency can be significantly improved by using an
R-tree on P.

20 4 6 8 10

2

4

6

8

10
p1

p2

p3

p4

p5

p6

p7

p8
p9

p10

p11

p12

p13

r1

r2

r3

r4 r5

r6

r7

q

p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 p13

r1 r2 r3 r4 r5

r6 r7

u1 u2 u3 u4 u5

u6 u7

u8

INFS4205/7205, Uni of Queensland Nearest Neighbor Search



Mindist

Given a point q and an axis-parallel rectangle r , the mindist of q
and r , denoted as mindist(q, r), equals minp∈r ‖q, p‖.

r

p1

p2

p3

In the above example, with respect to r , the mindists of p1 and p2 are
equal to the lengths of the two segments shown, while that of p3 is 0.

Think: how to compute mindist(q, r) in O(d) time?

INFS4205/7205, Uni of Queensland Nearest Neighbor Search



Algorithm 1: Branch-and-bound (BaB)

BaB performs a depth-first traversal of the R-tree but uses mindists to (i)
prioritize the nodes for accessing, and (ii) prune the nodes that cannot
contain the final answer.

Let us illustrate the algorithm from an example. To find the NN of q (as
shown in the figure), BaB starts from the root of the R-tree, where it
sees two MBRs r6 and r7. The mindists from q to r6 and r7 are 0 and 1,
respectively. Since mindist(q, r6) is smaller, algorithm visits u6 next.

20 4 6 8 10

2

4

6

8

10
p1

p2

p3

p4

p5

p6

p7

p8
p9

p10

p11

p12

p13

r1

r2

r3

r4 r5

r6

r7

q

p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 p13

r1 r2 r3 r4 r5

r6 r7

u1 u2 u3 u4 u5

u6 u7

u8

INFS4205/7205, Uni of Queensland Nearest Neighbor Search



Branch-and-bound (BaB)

At node u6, BaB chooses to descend into MBR r1, because its mindist
from q is smaller than that of r2.

20 4 6 8 10

2

4

6

8

10
p1

p2

p3

p4

p5

p6

p7

p8
p9

p10

p11

p12

p13

r1

r2

r3

r4 r5

r6

r7

q

p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 p13

r1 r2 r3 r4 r5

r6 r7

u1 u2 u3 u4 u5

u6 u7

u8

INFS4205/7205, Uni of Queensland Nearest Neighbor Search



Branch-and-bound (BaB)

Now the algorithm is at the leaf node u1. It simply computes the
distance from q to each data point in u1, and remembers the nearest
one, i.e., p3. This is the current NN of q found so far.

20 4 6 8 10

2

4

6

8

10
p1

p2

p3

p4

p5

p6

p7

p8
p9

p10

p11

p12

p13

r1

r2

r3

r4 r5

r6

r7

q

p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 p13

r1 r2 r3 r4 r5

r6 r7

u1 u2 u3 u4 u5

u6 u7

u8

INFS4205/7205, Uni of Queensland Nearest Neighbor Search



Branch-and-bound (BaB)

Now the algorithm backtracks to node u6, where the subtree of MBR r2
has not been explored yet. However, the fact that the mindist(q, r2) = 4
is greater than the distance 2

√
2 from q to the current NN p3 rules out

the possibility that the NN of q can be inside r2. Therefore, the subtree
of r2 can be pruned.

20 4 6 8 10

2

4

6

8

10
p1

p2

p3

p4

p5

p6

p7

p8
p9

p10

p11

p12

p13

r1

r2

r3

r4 r5

r6

r7

q

p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 p13

r1 r2 r3 r4 r5

r6 r7

u1 u2 u3 u4 u5

u6 u7

u8

INFS4205/7205, Uni of Queensland Nearest Neighbor Search



Branch-and-bound (BaB)

Now we backtrack to the root, where MBR r7 has not been processed
yet. The mindist 1 between q and r7 is smaller than ‖q, p3‖ = 2

√
2.

Therefore, the child u7 of r7 must be visited.

20 4 6 8 10

2

4

6

8

10
p1

p2

p3

p4

p5

p6

p7

p8
p9

p10

p11

p12

p13

r1

r2

r3

r4 r5

r6

r7

q

p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 p13

r1 r2 r3 r4 r5

r6 r7

u1 u2 u3 u4 u5

u6 u7

u8

INFS4205/7205, Uni of Queensland Nearest Neighbor Search



Branch-and-bound (BaB)

At node u7, the algorithm accesses the child node u3 of MBR r3 which
has the smallest mindist to q among r3, r4, r5.

20 4 6 8 10

2

4

6

8

10
p1

p2

p3

p4

p5

p6

p7

p8
p9

p10

p11

p12

p13

r1

r2

r3

r4 r5

r6

r7

q

p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 p13

r1 r2 r3 r4 r5

r6 r7

u1 u2 u3 u4 u5

u6 u7

u8

INFS4205/7205, Uni of Queensland Nearest Neighbor Search



Branch-and-bound (BaB)

At node u3, BaB finds p7 which replaces p3 as its current NN.

Then, it backtracks to node u7 and prunes r4 and r5. After that, the
algorithm backtracks one more level to the root. As all the MBRs of the
root have been processed, it terminates with p7 as the final result.

20 4 6 8 10

2

4

6

8

10
p1

p2

p3

p4

p5

p6

p7

p8
p9

p10

p11

p12

p13

r1

r2

r3

r4 r5

r6

r7

q

p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 p13

r1 r2 r3 r4 r5

r6 r7

u1 u2 u3 u4 u5

u6 u7

u8

INFS4205/7205, Uni of Queensland Nearest Neighbor Search



Pseudocode of BaB

algorithm BaB(u, q)
/* u is the node being accessed, q is the query point;

pbest is a global variable that keeps the NN found so far;
the algorithm should be invoked by setting u to the root */

1. if u is a leaf node then
2. if the NN of q in u is closer to q than pbest then
3. pbest = the NN of q in u
4. else
5. sort the MBRs in u in ascending order of their mindists to q

/* let r1, ..., rf be the sorted order */
6. for i = 1 to f
7. if mindist(q, ri ) < ‖q, pbest‖ then
8. Bab(ui , q)

/* ui is child node of ri */

Note: the above description assumes that q has only one NN. It is easy

to extend it to the scenario where multiple points have the smallest

distance to q (think: how?)

INFS4205/7205, Uni of Queensland Nearest Neighbor Search



Algorithm 2: Best First (BF)

We have seen that BaB accessed u8, u6, u1, u7, u3. Next, we will learn a
better algorithm called best first (BF) that can avoid accessing u1.

20 4 6 8 10

2

4

6

8

10
p1

p2

p3

p4

p5

p6

p7

p8
p9

p10

p11

p12

p13

r1

r2

r3

r4 r5

r6

r7

q

p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 p13

r1 r2 r3 r4 r5

r6 r7

u1 u2 u3 u4 u5

u6 u7

u8

INFS4205/7205, Uni of Queensland Nearest Neighbor Search



Algorithm 2: Best First (BF)

Again, we illustrate the BF algorithm with an example. As with BaB, BF
also starts from the root. At any moment, the algorithm keeps in
memory all the intermediate MBRs that have been seen but not yet
accessed in a sorted list H, using their mindists to q as the sorting keys.
In our example, so far we have seen only two MBRs r6, r7, so H has two
entries {(r6, 0), (r7, 1)}.

20 4 6 8 10

2

4

6

8

10
p1

p2

p3

p4

p5

p6

p7

p8
p9

p10

p11

p12

p13

r1

r2

r3

r4 r5

r6

r7

q

p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 p13

r1 r2 r3 r4 r5

r6 r7

u1 u2 u3 u4 u5

u6 u7

u8

INFS4205/7205, Uni of Queensland Nearest Neighbor Search



Best First (BF)

Each iteration of BF removes from H the MBR with the smallest mindist,
and accesses its child node. Continuing the example, BF removes r6 from
H, visits its child node u6, and adds to H the MBRs r1, r2 there. At this
time, H = {(r7, 1), (r1, 2), (r2, 4)}.

20 4 6 8 10

2

4

6

8

10
p1

p2

p3

p4

p5

p6

p7

p8
p9

p10

p11

p12

p13

r1

r2

r3

r4 r5

r6

r7

q

p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 p13

r1 r2 r3 r4 r5

r6 r7

u1 u2 u3 u4 u5

u6 u7

u8

INFS4205/7205, Uni of Queensland Nearest Neighbor Search



Best First (BF)

Similarly, as r7 has the smallest key in H, BF accesses its child node u7,
after which H = {(r3, 1), (r1, 2), (r2, 4), (r4, 5), (r5,

√
53)}.

20 4 6 8 10

2

4

6

8

10
p1

p2

p3

p4

p5

p6

p7

p8
p9

p10

p11

p12

p13

r1

r2

r3

r4 r5

r6

r7

q

p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 p13

r1 r2 r3 r4 r5

r6 r7

u1 u2 u3 u4 u5

u6 u7

u8

INFS4205/7205, Uni of Queensland Nearest Neighbor Search



Best First (BF)

Next, the algorithm visits leaf node u3, where p7 is taken as the current
NN. Then, BF terminates because ‖q, p7‖ = 1 is smaller than the lowest
mindist of the MBRs in H = {(r1, 2), (r2, 4), (r4, 5), (r5,

√
53)}, implying

that p7 must be the final NN.

20 4 6 8 10

2

4

6

8

10
p1

p2

p3

p4

p5

p6

p7

p8
p9

p10

p11

p12

p13

r1

r2

r3

r4 r5

r6

r7

q

p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 p13

r1 r2 r3 r4 r5

r6 r7

u1 u2 u3 u4 u5

u6 u7

u8

INFS4205/7205, Uni of Queensland Nearest Neighbor Search



Pseudocode of BF

algorithm BF(q)
/* in the following H is a sorted list where each entry is an MBR

whose sorting key in H is its mindist to q;
pbest is a global variable that keeps the NN found so far. */

1. insert the MBR of the root in H
2. while ‖q, pbest‖ is greater than the smallest mindist in H

/* if pbest = ∅, ‖q, pbest‖ =∞ */
3. remove from H the MBR r with the smallest mindist
4. access the child node u of r
5. if u is an intermediate node then
6. insert all the MBRs in u into H
7. else
8. if the NN of q in u is closer to q than pbest then
9. pbest = the NN of q in u

Note: the above description assumes that q has only one NN. It is easy

to extend it to the scenario where multiple points have the smallest

distance to q (think: how?)

INFS4205/7205, Uni of Queensland Nearest Neighbor Search



Think: what data structure would you use to manage H?

INFS4205/7205, Uni of Queensland Nearest Neighbor Search



We have seen from the above examples that BF accesses less nodes
than BaB. It is natural to wonder: can BF be further improved?
The answer turns out to be no. As will proved next, BF is optimal,
i.e., it is guaranteed to access the least number of nodes among all
the algorithms that use the same R-tree to solve a given NN query.

INFS4205/7205, Uni of Queensland Nearest Neighbor Search



Optimality of BF

Denote by C the circle that centers at q, and has radius ‖p∗, q‖, where
p∗ is an arbitrary NN of q. Let S∗ be all the nodes whose MBRs
intersect C .

It is important to observe that all algorithms must access all the nodes in
S∗. Assume, for example, that the node with MBR r in the figure below
was not accessed. How could the algorithm assert that no point in r is
closer to q than p∗?

r

q

p∗

C

INFS4205/7205, Uni of Queensland Nearest Neighbor Search



Optimality of BF

It suffices to prove that BF accesses only those nodes whose MBRs
intersect C . This can be shown in two steps:

1 BF accesses MBRs in non-descending order of their mindists to q.

Let r1 and r2 be two MBRs accessed consecutively. r2 either
already existed in H when r1 was visited, or r2 is an MBR
inside r1. In either case, it must hold that
mindist(q, r2) ≥ mindist(q, r1).

2 Let r be the MBR of a leaf node containing an arbitrary NN of q.
Let r ′ be an MBR that does not intersect C . By the first bullet, r is
visited before r ′. However, when r is found, BF must necessarily
discover p∗, whose presence prevents the algorithm from accessing
r ′ (Line 2 in Slide 21).

INFS4205/7205, Uni of Queensland Nearest Neighbor Search



So far we have assumed that, if multiple data points have the
smallest mindist to q, all of them must be reported.

There is an alternative version of NN search where it suffices to
report one arbitrary NN in the aforementioned scenario. The BF
algorithm (executed precisely as described in Slide 21) is not opti-
mal in such a case. Can you construct a counter-example?

INFS4205/7205, Uni of Queensland Nearest Neighbor Search



Extensions

BF can be adapted to solve more complicated forms of nearest neighbor
search:

Other distance metrics: So far we have assumed that the distance
between two points are computed by Euclidean distance, which is
known as the L2 norm. In general, the distance between two points
p and q under Lt norm—where t is an arbitrary positive value—is
calculated as: (

d∑
i=1

∣∣∣p[i ]− q[i ]
∣∣∣t)1/t

.

The NN problem extends in a straightforward manner to these
distance metrics (and many others).

k nearest neighbor search: Given a query point q, return the data
points with the smallest, 2nd smallest, ..., k-th smallest distances to
q.

Distance browsing: This operation outputs the points of the dataset
P in ascending order of their distances to q.

INFS4205/7205, Uni of Queensland Nearest Neighbor Search


