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Nearest Neighbor Search

Let P be a set of n d-dimensional points in Rd . Denote the Euclidean
distance between two points p, q ∈ Rd by ‖p, q‖.

Recall that:

Given a query point q, a nearest neighbor (NN) query returns all
the points p ∈ P such that ‖p, q‖ ≤ ‖p′, q‖ for ∀p′ ∈ P.

In this class, the dimensionality d cannot be regarded as a constant. The
dependence on d in all the complexities must be made explicit.
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The Curse of Dimensionality

Many efficient nearest neighbor algorithms are known for the case when
the dimensionality d is “low”. However, for all the existing solutions, either
the space or query time is exponential in the dimensionality d .

This phenomenon is called the curse of dimensionality.

One approach to deflate the curse is to trade precision for efficiency: specif-
ically, how to achieve polynomial (in both d and n) space and query cost
by accepting slightly worse neighbor points.
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c-Approximate Nearest Neighbor Search

For c > 1, a c-approximate nearest neighbor (c-ANN) query spec-
ifies a point q. If p∗ is the NN of q, the query returns an arbitrary
point p ∈ P such that ‖p, q‖ ≤ c · ‖p∗, q‖.

p4 is the NN of q.

p1, . . . , p4 are all 2-ANNs of q.

Any of p1, . . . , p4 is a legal answer to the 2-ANN
query w.r.t. q.

q

p1

p2

p3

p4

2 · ‖p4, q‖

INFS4205/7205, Uni of Queensland Approx. Nearest Neighbor Search in High Dimensional Space



(r , c)-Near Neighbor Search

Given a point q, define B(q, r) as the set of the points in P whose
distances to q are at most r .

For c > 1, the result of an (r , c)-near neighbor query with a point
q is defined as follows:

If there exists a point in B(q, r), the result must be a point
in B(q, c · r).

Otherwise, the result is either empty or a point in B(q, c · r).

For the (r , 2)-near neighbor query with q, the
result can be either empty or any one of p1 and
p2.

The result must be one of p1, p2 and p3 for the
(2r , 32 )-near neighbor query with q.
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Reduction from 4-ANN to (r , 2)-Near Neighbor Search

Next we show how to answer a 4-ANN query by solving a sequence of
(r , 2)-near neighbor queries with different r values.

Remark. Our technique can be extended to reduce a ((1 + ε) · c)-
ANN query to a sequence of (r , c)-near neighbor queries, for any
value of c > 1 and an arbitrary constant ε > 0.

For simplicity, let us make a mild assumption:

All the point coordinates are in an integer domain of range [1,M].
In other words, the data space is [1,M]d .

Thus, the distance between any two distinct points in the data space is
in [1, dmax ], where dmax =

√
d ·M.
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Reduction from 4-ANN to (r , 2)-Near Neighbor Search

In the figure, the radii of the circles are
1, 2, 4, 8 and 16, respectively. Namely,
the radius grows by a factor of 2.

We perform (2i , 2)-near neighbor queries
in ascending order of i , until a query re-
turns a non-empty result.

p1

p2

p3

p4
p5

p6

p7

q

8

16

4

INFS4205/7205, Uni of Queensland Approx. Nearest Neighbor Search in High Dimensional Space



Reduction from 4-ANN to (r , 2)-Near Neighbor Search

The 4-ANN Query Algorithm

Set r = 1. Repeat the following steps:

Perform an (r , 2)-near neighbor query with q. If a point p is
returned from the query, then return p as a 4-ANN of q.

Otherwise, set r = 2 · r .

Clearly, there can be at most dlog2 dmaxe iterations.
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Lemma: The query algorithm correctly returns a 4-ANN of a query
point q.

Proof. Let p∗ be the NN of q, p the point returned by the algorithm, and
r∗ the value of r when the algorithm terminates.

On one hand, since r∗ is the smallest value of r such that a point in P is
returned, we have r∗

2 < ‖p∗, q‖. Because otherwise, a point would have

been returned when r = r∗

2 , which contradicts with the definition of r∗.
Thus, r∗ < 2 · ‖p∗, q‖.

On the other hand, as p is returned from an (r∗, 2)-near neighbor query,
‖p, q‖ ≤ 2 · r∗.

Combining the above two inequalities, ‖p, q‖ < 4 · ‖p∗, q‖. Therefore, p
is a 4-ANN of q.

�
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Next we will focus on how to answer (r , 2)-near neighbor queries. In
particular, we will consider only r = 1 (this does not lose generality; why?).

We will learn a new technique called locality sensitive hashing (LSH).
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Basic Idea

First, pick a random line `1 passing through the origin. Then, chop the
line into intervals of width 32. Associate each interval with a unique ID.

Let h1 : Rd → N be the hash func-
tion that projects ∀p ∈ Rd into the
interval with ID h1(p) of `1. As a re-
sult, each interval essentially is a hash
bucket.

Observe that by h1, “nearby” points
are more likely to be hashed into the
same bucket than those “far apart”
points.

A hash function with such “locality
preserving” property is called locality
sensitive.
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(p1, p2)-Sensitive Family

For p1 > p2, a function family H = {h : Rd → U} is called
(p1, p2)-sensitive if for ∀h ∈ H and any two points u, v ∈ Rd , we
have:

if ‖u, v‖≤1, then the probability Pr [h(u) = h(v)]≥p1,

if ‖u, v‖>2, then the probability Pr [h(u) = h(v)]≤p2.

There exists a (p1, p2)-sensitive family such that ρ = log 1/p1
log 1/p2

≤ 0.5.

For a query point q, the points in B(q, 1) are hashed into the bucket h(q)
with a relatively high probability. While those points that are not in B(q, 2)
are hashed into h(q) with a smaller probability.

Intuitively, the points in the bucket h(q) are more likely in B(q, 2).
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False Positive

For a query point q, the points u in the
bucket h(q) with ‖u, q‖ > 2 are called
false positives.

Unfortunately, the expected number of
false positives can be as large as p2 ·n.
This seriously affects the query time.
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We remedy this issue by “concatenating” multiple hash functions in H
together.
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Concatenating Hash Functions

Continuing the previous example, let
us generate another hash function h2
in the same way as h1.

Consider a hash function g : Rd →
N2 defined by concatenating h1 and
h2, i.e., g(u) = (h1(u), h2(u)). Each
g(u) corresponds to a (concatenated)
bucket. g(u) = g(v) if and only if
h1(u) = h1(v) and h2(u) = h2(v).

As shown in the figure, the number
of false positives for q in the bucket
g(q) = (3, 0) (i.e., the gray region)
has been significantly reduced.
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Concatenating Hash Functions

For an integer k, we define a function family G = {g : Rd → Uk}, where
each g(u) = (h1(u), h2(u), · · · , hk(u)) consists of k hash functions chosen
independently and uniformly from an (p1, p2)-sensitive family H.

For any two points u, v ∈ Rd , g(u) = g(v) if and only if hi (u) = hi (v)

for all i = 1, · · · , k . Thus, Pr [g(u) = g(v)] =
∏k

i=1 Pr [hi (u) = hi (v)].
Hence:

if ‖u, v‖ ≤ 1, then Pr [g(u) = g(v)] ≥ pk1 ,

if ‖u, v‖ > 2, then Pr [g(u) = g(v)] ≤ pk2 .

Therefore, the function family G is (pk1 , p
k
2 )-sensitive.

Remark. By a hash function g ∈ G, the expected number of
false positives is reduced to pk2 · n. However, in the meanwhile,
the probability for a point in B(q, 1) being hashed into g(q) also
decreases to as small as pk1 .
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The Repeating Trick

To increase the probability for a near
neighbor being hashed into the same
bucket of q, we repeatedly use differ-
ent hash functions from G to construct
different hash tables.
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The LSH Technique

For an integer L, the LSH constructs L hash tables for P as follows:

Independently and uniformly choose L functions g1, g2, · · · , gL from
the (pk1 , p

k
2 )-sensitive function family G.

For each gi , construct a hash table for P by hashing each point
u ∈ P into bucket gi (u).

The (1, 2)-Near Neighbor Query Algorithm

For a query point q, inspect the L hash buckets g1(q), · · · , gL(q) by check-
ing each point u therein:

If ‖u, q‖ ≤ 2, then return u.

Otherwise, if so far in total 3 · L or all the points in the L buckets
have been checked, then terminate and return nothing.
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Query Examples

Theoretically speaking, we do need to
construct a sufficiently large number
of hash tables to ensure correctness.
However, in most cases, about 10 hash
tables are enough to answer queries. In
this example, we only need three.
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Correctness

For a fixed query point q, consider the following two events:

E1: If there exists a point u ∈ B(q, 1), then gi (u) = gi (q) for some
i ∈ {1, 2, · · · , L}.
E2: The total number of false positives in the L buckets
g1(q), g2(q), · · · , gL(q) is less than 3 · L.

Lemma: When both E1 and E2 hold at the same time, the query
algorithm correctly answers an (1, 2)-near neighbor query with q.
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Correctness

Proof. Let |gi (q)| be the number points in the bucket gi (q). Observe
that the query algorithm examines at most min{∑i |gi (q)|, 3 · L} points.

When
∑

i |gi (q)| < 3 · L, by the fact that E1 holds, if there exists u ∈
B(q, 1), then u is in at least one of the L buckets. Thus, u must have
been checked. Hence, a point in B(q, 2) must be returned. On the other
hand, if B(q, 1) = ∅, then either reporting a point in B(q, 2) or not is
correct.

When the algorithm has checked 3 · L points, since E2 holds, there must
be at least one point in B(q, 2). Hence, one such point will be returned.

�
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Next, we show that:

By setting the values of k and L carefully, both the two events E1

and E2 hold at the same time with at least constant probability.

In other words, the query algorithm correctly answers an (1, 2)-near neigh-
bor query with q with at least constant probability.
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Before we jump into the technical details, let us first get an idea of the
basic direction to set k and L.

On one hand, as the expected number of false positives in gi (q) is pk2 · n,
its total expected number over all the L buckets is L · pk2 · n. If we can
make this total expectation ≤ L, then its actual value is not likely to be
much larger than L. As a result, L · pk2 · n ≤ L⇒ k ≥ log1/p2 n.

On the other hand, since Pr [gi (u) = gi (q)] ≥ pk1 for a point u ∈ B(q, 1),
the probability of gi (u) 6= gi (q) for all the L buckets is ≤ (1 − pk1 )L. We
will show that this probability is no more than a constant when L ≥ 1/pk1 .
As a result, the probability of at least one gi (u) = gi (q) among all the L
buckets is ≥ 1− (1− pk1 )L which is greater than a constant.

Thus, we set k = dlog1/p2 ne and L = d
√
n

p1
e ≥ d nρp1 e ≥ d

1
pk
1
e for ρ =

log 1/p1
log 1/p2

≤ 0.5.

In what follows, we will prove that both Pr [E1] and Pr [E2] are greater than
a constant under the above values of k and L.
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Preliminary 1: Markov’s Inequality

For a nonnegative random integer variable X and t > 0, we have:

Pr [X ≥ t] ≤ E [x ]

t
.

Proof.

E [X ] =
∑
x

x · Pr [X = x ]

≥
∑
x≥t

x · Pr [X = x ]

≥ t
∑
x≥t

Pr [X = x ]

= t · Pr [X ≥ t]

�

INFS4205/7205, Uni of Queensland Approx. Nearest Neighbor Search in High Dimensional Space



Preliminary 2:

For x ≥ 1, (1− 1
x )x ≤ 1

e holds.

Proof. By the well-known inequality 1 + y ≤ ey for |y | ≤ 1, we have:

(1− 1

x
)x ≤ e−

1
x ·x =

1

e

for x ≥ 1.

�
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Preliminary 3: Union Bound

For two events A and B, we have:

Pr [A ∪ B] = Pr [A] + Pr [B]− Pr [A ∩ B] ≤ Pr [A] + Pr [B].
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The event
E1: If there exists a point u ∈ B(q, r), then gi (u) = gi (q)
for some i ∈ {1, 2, · · · , L}.

holds with at least probability of 1 − 1
e , for k = dlog1/p2 ne and

L = d
√
n

p1
e.

Proof. Since for a point u ∈ B(q, 1), we have Pr [gi (u) = gi (q)] ≥ pk1 for

∀i = 1, . . . , L. Thus, Pr [
∧L

i=1 gi (u) 6= gi (q)] ≤ (1− pk1 )L.

As k = dlog1/p2 ne, we have pk1 ≥ p1
nρ ≥

p1√
n
≥ 1

L . Thus,

Pr [
∧L

i=1 gi (u) 6= gi (q)] ≤ (1− pk1 )L ≤ (1− 1
L )L ≤ 1

e .

Therefore, Pr [E1] = 1− Pr [
∧L

i=1 gi (u) 6= gi (q)] ≥ 1− 1
e .

�
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The event
E2: The total number of false positives in the L buckets
g1(q), g2(q), . . . , gL(q) is less than 3 · L.

holds with at least probability of 2
3 , for k = dlog1/p2 ne and L =

d
√
n

p1
e.

Proof. The expected number of false positive in gi (q) is at most pk2 ·n ≤ 1.
Denote by X the random variable of the total number of false positives
over all gi (q)’s. Thus, E [X ] ≤ L.

By Markov’s inequality, we have Pr [X ≥ 3 · L] ≤ E [X ]
3·L ≤ 1

3 . Therefore,
Pr [E2] = 1− Pr [X ≥ 3 · L] ≥ 2

3 .

�

INFS4205/7205, Uni of Queensland Approx. Nearest Neighbor Search in High Dimensional Space



Finally, by the Union Bound, Pr [Ē1 ∪ Ē2] ≤ Pr [Ē1] + Pr [Ē2] ≤ 1
e + 1

3 .
Hence, Pr [E1 ∩ E2] ≥ 1− 1

e − 1
3 = 2

3 − 1
e .

Therefore,

There exists a (p1, p2)-sensitive family such that by setting k =

dlog1/p2 ne and L = d
√
n

p1
e, the LSH correctly answers an (1, 2)-

near neighbor query with probability at least 2
3 − 1

e .
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Query Time

For a query point q, the time for computing g1(q), · · · , gL(q) is O(d ·k ·L),
and the time for checking at most 3 · L points is O(d · L). Thus, the total
query time is bounded by O(d · k · L) = O(d · √n · log n).

Space

The space consumption consists of two parts: (i) the space O(d · n) for
storing P, and (ii) the space O(n · L) = O(n1.5) for the L hash tables.
Hence, the total space consumption is O(d · n + n1.5).
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Remark. The value L = d
√
n

p1
e is only valid for ρ = log 1/p1

log 1/p2
≤ 0.5

for some specific (p1, p2)-sensitive families. In fact, for any such
family this bound does not always hold, in which case, we can only
bound L = d nρp1 e.

Nevertheless, all our previous analysis applies to any (p1, p2)-
sensitive family H (and hence, G) by using L = d nρp1 e. In other
words, both query time and space consumption essentially depend
on the value of ρ.

Different families H have various ρ values, and hence would re-
sult in different performance. The smaller value of ρ the better
performance can be achieved.
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A (p1, p2)-Sensitive Family

A well-known (p1, p2)-sensitive family H = {h : Rd → N} with ρ ≤ 0.5
for the Euclidean distance has the following form:

h(u) = b~a · ~u + b

w
c,

where:

~a is a d-dimensional vector, whose each coordinate is chosen
independently from the standard Gaussian Distribution N(0, 1);

w is an appropriate integer (e.g., w = 32); and

b is a real value uniformly drawn from the range [0,w).
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