
Multidimensional Divide and
Conquer 2 — Spatial Joins

Yufei Tao

ITEE
University of Queensland

INFS4205/7205, Uni of Queensland Multidimensional Divide and Conquer 2 — Spatial Joins

Today we will continue our discussion of the divide and conquer method
in computational geometry. This lecture will discuss the spatial join,
which is another fundamental problem on multidimensional rectangles.
Central to our discussion is an output-sensitive technique, which aims to
design an algorithm whose cost depends on the size of the result (i.e.,
how much do we need to output).

INFS4205/7205, Uni of Queensland Multidimensional Divide and Conquer 2 — Spatial Joins

Spatial Join

Let R and S be sets of axis-parallel rectangles in R2. The objective
of the spatial join problem is to output all pairs of rectangles (r , s) ∈
R × S such that r intersects s.

r1

r2

r3

r4

2

4

6

8

10

12

2 4 6 8 10 12 14 16

s1 s2

s3

s4

The result is {(r2, s2), (r2, s3), (r2, s4), (r3, s2), (r3, s3), (r3, s4), (r4, s3)}.

INFS4205/7205, Uni of Queensland Multidimensional Divide and Conquer 2 — Spatial Joins

Applications

“For each hotel, find all the restaurants that are within 5km”.

“Find all the intersection points between railways and roads”.

“Find all pairs of airplanes within a distance (in the 3D space) of
10km at 12pm of 1 Jan 2017”.

Consider a dating website where each man registers his age, height,
and salary, and each woman specifies ranges on the age, height, and
salary of her ideal significant other. “Find all pairs of (man, woman)
such that the man satisfies the requirements of the woman”.

...

Think: In the first 3 applications, where are the “rectangles”? Hint:

Filter refinement.

INFS4205/7205, Uni of Queensland Multidimensional Divide and Conquer 2 — Spatial Joins

Naive Solution Already Worst-Case Optimal

One simple algorithm solving the spatial join is simply to inspect all the
pairs. Set n = |S |+ |T |. The running time is O(n2).

In the worst case, however, every algorithm must incur Ω(n2) time
because there can be n2/4 pairs to report! This happens when every
rectangle in S intersects every rectangle in T .

In other words, O(n2) time is already asymptotically optimal.

INFS4205/7205, Uni of Queensland Multidimensional Divide and Conquer 2 — Spatial Joins

Remedy: Output-Sensitive Algorithms

It would be really disappointing if we had to accept O(n2) as the best we
could do—this complexity is horrible in practice. Fortunately, we do not
have to. Notice that the “optimality proof” on the previous slide
(although correct) is rather weak: it requires the result to have Ω(n2)
pairs, which seldom happens in practice. In other words, if we denote by
k the number of result pairs, we often have k � n2. Can we achieve
good efficiency in those scenarios?

The answer is yes. We will learn an algorithm that solves the problem in
O(n log n + k) time. Such a time complexity is output-sensitive by being
“elastic” to the output size. It is clearly better than a non-elastic running
time of O(n2)—the two are equivalent only when k = Ω(n2).

Note that Ω(n + k) is a trivial lower bound for any algorithm (why?).

Therefore, O(n log n + k) is “nearly” optimal, up to only a factor of

O(log n).

INFS4205/7205, Uni of Queensland Multidimensional Divide and Conquer 2 — Spatial Joins

Next, we will explain how to apply divide and conquer to achieve
the aforementioned performance guarantees. Our goal is (again)
to reduce the dimensionality of the problem. Attention should be
paid to two aspects:

How to divide a problem recursively into two
sub-problems—as we will see, this is done in a more
sophisticated manner than in the skyline problem;

The analysis, in particular, how the output-sensitive bound is
established.

INFS4205/7205, Uni of Queensland Multidimensional Divide and Conquer 2 — Spatial Joins

Rectangles-Join-Points

Let R be a set of axis-parallel rectangles, and P be a set of points,
all in R2. The objective of the rectangles-join-points problem is to
output all pairs of (r , p) ∈ R × P such that r intersects p.

p1

p2 p3

p4

p5

r1

r2

r3

r4

p6

p7

p8

2

4

6

8

10

12

2 4 6 8 10 12 14 16

The result is {(r2, p4), (r2, p5),
(r2, p7), (r3, p3), (r3, p4), (r3, p5),
(r3, p6), (r3, p7), (r4, p6)}.

This problem cannot be harder than spatial join. An algorithm solving the

latter problem efficiently must be able to do so on the former (why)?

INFS4205/7205, Uni of Queensland Multidimensional Divide and Conquer 2 — Spatial Joins

1D Rectangles-Join-Points

Let us first consider the rectangles-join-points problem in 1D space.
Here, R is a set of intervals, and P a set of points, both in R.

p1 p2 p3 p4 p5

r1

r2
r3 r4

r5

By resorting to the binary search tree, we can easily settle the problem in
O(n log n + k) time (think: how). But this will not be enough for us to
solve the spatial join problem fast enough.

It turns out that we can do better if the input sets have been sorted, as
explained next.

INFS4205/7205, Uni of Queensland Multidimensional Divide and Conquer 2 — Spatial Joins

1D Sorted Rectangles-Join-Points

Again, R is a set of intervals, and P a set of points, both in R. The
points of P have been sorted. Likewise, the intervals of R have been
sorted by left endpoint.

p1 p2 p3 p4 p5

r1

r2
r3 r4

r5

Sorted list on P: p1, p2, p3, p4, p5.
Sorted list on R: r1, r2, r3, r4, r5.

Combined sorted list: r1, r2, r3, p1, p2, r4, r5, p3, p4, p5.

Can be obtained in O(n) time from the sorted lists of P and R.

INFS4205/7205, Uni of Queensland Multidimensional Divide and Conquer 2 — Spatial Joins

1D Sorted Rectangles-Join-Points: Algorithm

We will process the combined sorted list in ascending order. Whenever
we encounter an interval, it is added to a linked list L.

p1 p2 p3 p4 p5

r1

r2
r3 r4

r5

In the above example, after processing r1, r2, r3, we have L = (r1, r2, r3).
Let us say that these intervals are alive.

INFS4205/7205, Uni of Queensland Multidimensional Divide and Conquer 2 — Spatial Joins

1D Sorted Rectangles-Join-Points: Algorithm

Whenever a point p is encountered, we go through L to check whether
the intervals therein contain p. For every such interval r , report (r , p).

p1 p2 p3 p4 p5

r1

r2
r3 r4

r5

Continuing our example, next the algorithm processes point p1. Since all
the intervals in L cover p1, we report (r1, p1), (r2, p1), and (r3, p1).

INFS4205/7205, Uni of Queensland Multidimensional Divide and Conquer 2 — Spatial Joins

1D Sorted Rectangles-Join-Points: Algorithm

If we find an interval r ∈ L such that r does not cover p, we delete r
from L.

p1 p2 p3 p4 p5

r1

r2
r3 r4

r5

From the previous slide, the algorithm turns to point p2. Since r1, r2
cover p2, we report (r1, p2) and (r2, p2). However, r3 is removed from L,
after which L = (r1, r2). In other words, r3 is dead.

Think: Can r3 cover any more points?

INFS4205/7205, Uni of Queensland Multidimensional Divide and Conquer 2 — Spatial Joins

1D Sorted Rectangles-Join-Points: Algorithm

p1 p2 p3 p4 p5

r1

r2
r3 r4

r5

After processing r4 and r5, we have L = (r1, r2, r4, r5). The processing of
p3 outputs (r2, p3), (r4, p3), and (r5, p3), but removes r1 from L, which
then becomes (r2, r4, r5).

The rest of the algorithm proceeds in the same manner.

INFS4205/7205, Uni of Queensland Multidimensional Divide and Conquer 2 — Spatial Joins

1D Sorted Rectangles-Join-Points: Analysis

Let us now analyze the running time of the algorithm.

First, apparently it takes only O(1) time process each interval—all we
need to do is to insert it into L.

Hence, the total cost of processing all the intervals is O(|R|) = O(n).

INFS4205/7205, Uni of Queensland Multidimensional Divide and Conquer 2 — Spatial Joins

1D Sorted Rectangles-Join-Points: Analysis

What is the time of processing the i-th point pi (1 ≤ i ≤ |P|)?

Clearly it equals O(|L|), namely, the number of alive intervals. The crux
of the analysis is to break |L| into two terms:

|L| = ki + ndeli

where

ki is the number of pairs reported when processing pi .

ndeli is the number of intervals removed from L (i.e., the dead
intervals).

INFS4205/7205, Uni of Queensland Multidimensional Divide and Conquer 2 — Spatial Joins

1D Sorted Rectangles-Join-Points: Analysis

Therefore, the total cost of processing all the points is

O

 |P|∑
i=1

(
ki + ndeli

) = O

 |P|∑
i=1

ki +

|P|∑
i=1

ndeli


= O(k + |R|)
= O(n + k).

Note:∑|P|
i=1 ki = k because each pair is reported exactly once.∑|P|
i=1 n

del
i ≤ |R| because each interval can be deleted at most once.

INFS4205/7205, Uni of Queensland Multidimensional Divide and Conquer 2 — Spatial Joins

2D Rectangles-Join-Points

Having concluded that 1D sorted rectangles-join-points can be solved in
O(n + k) time, we will now apply divide and conquer to attack the 2D
problem.

p1

p2 p3

p4

p5

r1

r2

r3

r4

p6

p7

p8

2

4

6

8

10

12

2 4 6 8 10 12 14 16

INFS4205/7205, Uni of Queensland Multidimensional Divide and Conquer 2 — Spatial Joins

2D Rectangles-Join-Points: Algorithm

Let X be the set of all x-coordinates in the input sets (i.e., the
x-coordinate of a left/right boundary of a rectangle, or the x-coordinate
of a point). Call the values in X the raw x-coordinates. In the above
example, X = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16}.

p1

p2 p3

p4

p5

r1

r2

r3

r4

p6

p7

p8

2

4

6

8

10

12

2 4 6 8 10 12 14 16

To facilitate our discussion, let us assume that all the raw x-coordinates

are distinct. Removing the assumption is easy and is left to you (hint: by

some tie-breaking).

INFS4205/7205, Uni of Queensland Multidimensional Divide and Conquer 2 — Spatial Joins

2D Rectangles-Join-Points: Algorithm

Divide the data space by a vertical line `, such that there are one half of
the raw x-coordinates on each side. In the example below, we place ` at
x = 8.5.

p1

p2 p3

p4

p5

r1

r2

r3

r4

p6

p7

p8

2

4

6

8

10

12

2 4 6 8 10 12 14 16

`

On the left hand side of `, the set X1 of raw x-coordinates is {1, 2, 3, 4, 5,

6, 7, 8}. On the right of `, the set X2 is {9, 10, 11, 12, 13, 14, 15, 16}.

INFS4205/7205, Uni of Queensland Multidimensional Divide and Conquer 2 — Spatial Joins

2D Rectangles-Join-Points: Algorithm

The line divides the problem into two sub-problems:

p1

p2 p3

p4

r1

r2

r3
2

4

6

8

10

12

2 4 6 8 10 12 14 16

`

p5

r4

p6

p7

p8

2

4

6

8

10

12

2 4 6 8 10 12 14 16

`

r2

r3

Note that some rectangles appear in both sub-problems: r2 and r3. We
will then solve (i.e., conquer) each sub-problem. No “result merging” is
needed (why?).

INFS4205/7205, Uni of Queensland Multidimensional Divide and Conquer 2 — Spatial Joins

2D Rectangles-Join-Points: Algorithm

p1

p2 p3

p4

r1

r2

r3
2

4

6

8

10

12

2 4 6 8 10 12 14 16

`

p5

r4

p6

p7

p8

2

4

6

8

10

12

2 4 6 8 10 12 14 16

`

r2

r3

Consider first the left sub-problem, whose “raw x-coordinate” set is
X1 = {1, 2, 3, 4, 5, 6, 7, 8}. Notice that, x = 8.5, is not counted as a raw
x-coordinate. Indeed, as far as the left sub-problem is concerned, the
right boundaries of r2 and r3 can be regarded of being at x =∞.

In this way, we guarantee that we never create new raw x-coordinates in
recursively dividing the problem.

INFS4205/7205, Uni of Queensland Multidimensional Divide and Conquer 2 — Spatial Joins

2D Rectangles-Join-Points: Algorithm

Consider dividing the right sub-problem into two:

p5

r4

p6

p7

p8

2

4

6

8

10

12

2 4 6 8 10 12 14 16

r2

r3

`

The left sub-sub-problem has raw x-coordinate set X21 = {9, 10, 11, 12},
while the right sub-sub-problem has raw x-coordinate set X22 = {13, 14,
15, 16}.

See the next slide for a clearer illustration of the two sub-sub-problems.

INFS4205/7205, Uni of Queensland Multidimensional Divide and Conquer 2 — Spatial Joins

2D Rectangles-Join-Points: Algorithm

From the previous slide, X21 = {9, 10, 11, 12} and X22 = {13, 14, 15, 16}.

p5

r4

p6

2

4

6

8

10

12

2 4 6 8 10 12 14 16

r2

r3

`

p7

p8

2

4

6

8

10

12

2 4 6 8 10 12 14 16

r2

r3

`

Something interesting happens in the left sub-sub-problem: r2 and r3 do
not contribute any raw x-coordinates. Notice that their x-ranges “span”
the x-range of this sub-sub-problem.

This is great news for us! We can immediately get rid of r2 and r3 by
finding their result pairs via a reduction to a 1D problem.

INFS4205/7205, Uni of Queensland Multidimensional Divide and Conquer 2 — Spatial Joins

2D Rectangles-Join-Points: Algorithm

From the previous slide, X21 = {9, 10, 11, 12} and X22 = {13, 14, 15, 16}.

p5

r4

p6

2

4

6

8

10

12

2 4 6 8 10 12 14 16

r2

r3

`

p7

p8

2

4

6

8

10

12

2 4 6 8 10 12 14 16

r2

r3

`

Something interesting happens in the left sub-sub-problem: r2 and r3 do
not contribute any raw x-coordinates. Notice that their x-ranges “span”
the x-range of this sub-sub-problem.

This is great news for us! We can immediately get rid of r2 and r3 by
finding their result pairs via a reduction to a 1D problem.

INFS4205/7205, Uni of Queensland Multidimensional Divide and Conquer 2 — Spatial Joins

2D Rectangles-Join-Points: Algorithm

p5

r4

p6

2

4

6

8

10

12

2 4 6 8 10 12 14 16

r2

r3

`

p5p6

2 4 6 8 10

.

.

r3
r2

From the left sub-sub-problem, we construct a 1D rectangles-join-points
instance with an interval set {r2, r3} and a point set {p5, p6}.

r2 and r3 are then excluded from the left sub-sub-problem.

INFS4205/7205, Uni of Queensland Multidimensional Divide and Conquer 2 — Spatial Joins

2D Rectangles-Join-Points: Algorithm

We can now summarize a principle behind our divide-and-conquer:

A sub-problem with a raw x-coordinate set X ′ includes only the
rectangles and points that contribute at least one coordinate to
X ′.

Rectangles that do not contribute to X ′ are dealt with directly
with a 1D instance. They will not be passed further down into
sub-sub-problems.

INFS4205/7205, Uni of Queensland Multidimensional Divide and Conquer 2 — Spatial Joins

2D Rectangles-Join-Points: Algorithm

The previous discussion points to the following divide-and-conquer
algorithm for solving the 2D rectangles-join-points problem (inputs: R
and P, with raw x-coordinate set X):

1. Let Rspan be the set of rectangles that do not contribute to X .

2. Construct a 1D rectangles-join-points instance with R ′ and P ′

where R ′ is the set of intervals obtained by projecting Rspan onto
the y-axis, and P the set of points obtained by projecting P onto
the y-axis. Solve the 1D instance.

3. Divide X into two disjoint subsets X1 and X2 with the same size (by
respecting the ordering) by a vertical line `.

4. Let R1 (or R2) be the set of rectangles in R that intersect with the
left (or right, resp.) side of `. Let P1 (or P2) be the set of points in
P that fall on the left (or right, resp.) side of `.

5. Solve the left sub-problem with inputs R1,P1 and X1, and the right
sub-problem with inputs R2,P2, and X2.

INFS4205/7205, Uni of Queensland Multidimensional Divide and Conquer 2 — Spatial Joins

2D Rectangles-Join-Points: Analysis

Let f (m) be the running time of our algorithm when the raw
X-coordinate set has a size of m. It holds that:

f (m) ≤ 2 · f (m/2) + g(m)

where g(m) is the cost of solving a 1D instance of size m.

When m ≤ 2, obviously f (m) = O(1).

Plugging g(m) = O(m) plus the linear output cost, we obtain
f (m) = O(m logm + k).

Remark 1: Every result pair is reported only once (think: why?).
Remark 2: To ensure g(m) = O(m) plus linear output time, we
must ensure that the 1D instances are sorted. How to do so without
increasing the time complexity?

The above also implies that our algorithm finishes in O(n log n + k) time,
because m ≤ 2n.

INFS4205/7205, Uni of Queensland Multidimensional Divide and Conquer 2 — Spatial Joins

Segment Join

Let V be a set of vertical segments, and H be a set of horizontal
segments, all in R2. The objective of the segment join problem is
to output all pairs of (v , h) ∈ V × H such that v intersects h.

h1

2

4

6

8

10

12

2 4 6 8 10 12 14

h2

h3

h4

v1

v2

v3

v4

The result is {(v1, h1), (v2, h2),
(v2, h3), (v4, h3)}.

This problem can also be solved in O(n log n + k) time, using essentially

the same algorithm. The details are left as an exercise.

INFS4205/7205, Uni of Queensland Multidimensional Divide and Conquer 2 — Spatial Joins

Spatial Join

Let R and S be sets of axis-parallel rectangles in R2. The objective
of the spatial join problem is to output all pairs of rectangles (r , s) ∈
R × S such that r intersects s.

r1

r2

r3

r4

2

4

6

8

10

12

2 4 6 8 10 12 14 16

s1 s2

s3

s4

This problem can be reduced to a rectangles-join-points problem and a
segment-join problem. The overall time complexity is O(n log n + k).
The details are left as an exercise.

INFS4205/7205, Uni of Queensland Multidimensional Divide and Conquer 2 — Spatial Joins

Spatial Join in d-dimensional Space

Let R and S be sets of axis-parallel rectangles in Rd . The objective
of the spatial join problem is to output all pairs of rectangles (r , s) ∈
R × S such that r intersects s.

Using divide and conquer, we can solve the problem in O(n logd−1 n + k)
time. We will explore the details in an exercise.

INFS4205/7205, Uni of Queensland Multidimensional Divide and Conquer 2 — Spatial Joins

