Grid Decomposition — Finding

the Closest or Close Pairs

Yufei Tao

ITEE
University of Queensland

INFS4205/7205, Uni of Queensland Grid Decomposition — Finding the Closest or Close Pairs

We will apply divide and conquer to solve another fundamental problem
in computational geometry: closest pair. Recall that all of our
divide-and-conquer algorithms so far work by reducing a d-dimensional
problem to a (d — 1)-dimensional one. This, however, will not be our
approach today. Instead, we will introduce a grid decomposition
technique, which allows us to deal with the closest pair problem directly
in d-dimensional space.

Grid decomposition is a very useful technique in general. To further
illustrate its power, we will deploy it to solve the close pairs problem
(which is very similar to, but yet different from, the closest pair problem).

INFS4205/7205, Uni of Queensland Grid Decomposition — Finding the Closest or Close Pairs

(Closest Pair and Close Pairs)

Let P be a set of points RY. The objective of the closest pair
problem is to output a pair of distinct points p,g € P that have
the smallest distance to each other, or formally:

dist(p, = i dist(p, q).
: (p q) p1, P2 enﬂll’l’nplfpz : (p q)

where dist(.,.) represents the Euclidean distance of two points.

Let P be a set of points R?, and r a real value. The objective
of the close pairs problem is to output all pairs of distinct points
p, q € P satisfying:

dist(p,q) < r.

INFS4205/7205, Uni of Queensland Grid Decomposition — Finding the Closest or Close Pairs

(Example: Closest Pair)

P12
12— o
L oPs
10— oPo
OPz
[Pe D13
81— o [¢]
L OP&
D
6—0 .
Pa P1o
— [¢] [¢]
41— o
27 D5
[© P11
L o
N T Y

The answer is (ps, ps).

INFS4205/7205, Uni of Queensland Grid Decomposition — Finding the Closest or Close Pairs

(Example: Close Pairs)

Assume r = 44/2.

P12
12— o
L obs
10— oPo
D2
° Pe P13
8— o [¢]
L OP&
P
6—o .
L Ol)r'l gl()
pr
41— o
27 Ps
[© P11
— [¢]
[I T O

The answer is {(plap‘l)? (plap2)7 (p27p3)7 (p2ap6)7 (p27p4)a }

INFS4205/7205, Uni of Queensland Grid Decomposition — Finding the Closest or Close Pairs

Applications

@ “Find the closest pair of airplanes at 12pm on 1 Jan 2017."
@ “Find the closest pair of earth quake locations in the last 5 years.”

@ “Find the two customers whose profiles are most similar to each
other.”

° ..
All the above applications have their counterparts with respect to the

close-pairs problem, e.g., “find all pairs of airplanes that were within
10km at 12pm on 1 Jan 2017".

INFS4205/7205, Uni of Queensland Grid Decomposition — Finding the Closest or Close Pairs

Next, we will first deal with the closest pair problem, and then
attend to the close pairs problem. Note that both problems can
be easily solved in O(n?) time, , where n = |P|. We, on the other
hand, aim to solve the first problem in O(nlogn) expected time,
and the second in O(n + k) expected time, where k is the number
of pairs reported.

INFS4205/7205, Uni of Queensland Grid Decomposition — Finding the Closest or Close Pairs

(Warm Up: Closest Pair in 1D)

Think: How to solve the the 1D closest pair problem in O(nlog n)
time?

Hint: Sorting suffices.

INFS4205/7205, Uni of Queensland Grid Decomposition — Finding the Closest or Close Pairs

(Closest Pair in 2D)

Let us now turn our attention to 2D space. Naturally, we divide P evenly
using a vertical line ¢, such that there are n/2 points on each side. Let
Py (or P,) be the set of points on the left (or right) of £. We recursively
find the closest pair in P1, and then in P,, respectively.

P4
o

0

P12
[e]

oPo

P13
[¢]

In the above example, the closest pair of Py is (p2, p3), and that of P; is

(p7, Ps).

INFS4205/7205, Uni of Queensland

Grid Decomposition — Finding the Closest or Close Pairs

(Closest Pair in 2D)

We need to “merge” the two halves to find the global closest pair. It
suffices to find the closest pair (p1, p2) satisfying p; € Py and
p2 € P,—namely, p1, po come from different sides. Call it the crossing

closest pair.
4 P12

12— ! o

- OP:&
10— oh

P2

° Pe P13

81— o o
)y
L) O[&
1
6—0o
P P1o
— o o
pr

4— e}

[Ps
2= e P

— o

[O O N T

0 2 4 10 12

In the above example, the crossing closest pair is (ps, ps). The global
closest pair must be among the two “local” pairs (p2, p3), (p7, ps), and
the crossing pair (pe, ps)-

INFS4205/7205, Uni of Queensland Grid Decomposition — Finding the Closest or Close Pairs

(Closest Pair in 2D)

We now explain how to find the crossing closest pair. Let r; be the
distance of the closest pair in Py, and r, be the distance of the closest

pair in P,. Define r = min{r, rn}.
12—

10—

y2
[¢]

P12
[e]

oPe

P13
[e]

2
le

In the above example,

8 10 12

n=+v8rn=3 and r=min{rn,nt =8

Observation: We

care about the crossing closest pair only if its
distance is smaller than or equal to r.

5, Uni of Queensland

Grid Decomposition — Finding the Closest or Close Pairs

(Closest Pair in ZD)

Impose an arbitrary grid G onto the data space, where (i) each cell is an
axis-parallel square with side length r/+/2, and (ii) £ is a line in the grid.

‘ P12

12— --r-mmr = mf- - - om0 - -
= 1 oM | | |

S oY
OPZ. ' ' 1 1

| i Do | ' P13

8= --r---r-O-f---r---F---0-
! ! Dsi ! 1
= ' ' ' '

6 p1a ' ' '
T H gw H
— ' '
b7

T T T S e
! ! ! ! !
NI o B S
H H H i
— ' ' ' 1 O
I I T I

0 2 4) 8 10 12

Each point p can be covered by at most 4 cells (e.g., po is covered by 4
cells, but pg by only 1 cell).

5, Uni of Queensland Grid Decomposition — Finding the Closest or Close Pairs

(Closest Pair in 2D)

For each cell ¢, we denote by c(P) the set of points in P that are
covered by c.

Observation: For every c, |c(P)| <2 = O(1)!

Proof: Note that the diagonal of ¢ has length r. If ¢ covers more than 2
points, at least 2 points have distance less than r—contradicting the

definition of r! O
¢ P12

120= e e e mfm o b LT
- o R
1()—__|____|_______ ']19__'____'__
T T

: : Pe : : bm
B R el s C b ST T e
= o o
(i-ﬁo-pl'---'-------'---'---'-

X N TR
— 1 1 1

b7

A
o Lo

1 Ps 1 1 1
I et It
— 1 1 ' 1 O

[I I I
0 2 4 8 10 12

INFS4205/7205, Uni of Queensland Grid Decomposition — Finding the Closest or Close Pairs

(Closest Pair in 2D)

Group the points by the cells they belong. A cell is non-empty if it covers
at least one point. There can be at most 4n non-empty cells.

¢ 2[)3
12
12 e e e e oo - PR S
— oM 14117 1 22|
1 1 ng 1 1
L TR et TERE
L 9
SR A
F=--r-=--Fr-O-F---rFr---r---0-
21)]: .8 oﬂ 120 24
6 .-.-.-.};.-
10,
1150 11 | 150 19 |
7 < A
- v 7 | 10 I I
I v Ps I I I
2f—--r---rO-F---r---rFr---r-
' - 1 v Py
I | | | :
N O O T
0 2 4 6 8 10 12

In the above example, there are 25 non-empty cells.

INFS4205/7205, Uni of Queensland Grid Decomposition — Finding the Closest or Close Pairs

(Closest Pair in 2D)

Each cell can be uniquely identified by the coordinates of its
centroid—which we refer to as the id of the cell. Using hashing, by
spending O(n) expected time in total, we can create for each cell ¢, a
linked list containing all the points in c(P) (i.e., the set of points covered

by ¢).
‘ i
T R e O e
— oM 141171 22
1 1 ng 1 1
10112. "9 13" 16" 21 ' og
3, Do , , P13
Rl e e e R S e
' ' Dsi ' '
— 8 | o 20
o 1w
L R e IREEL R FERLE
1150 111:15019:
7) S
(I 7 | 100 . .
' v Ps ' ' '
2f—--r---rO-F---r---rFr---r-
' ' ' Py
- 6 | | O
[N T O
0 2 4 S 10 12

5, Uni of Queensland Grid Decomposition — Finding the Closest or Close Pairs

(Closest Pair in 2D)

Let ¢, ¢ be two non-empty cells. We say that ¢; is an r-neighbor
of ¢, (and vice versa) if their mindist is at most r.

To find a crossing closest pair within distance r, it suffices to consider
(the points in) non-empty cells ci, ¢, satisfying (i) ¢; is on the left of ¢,
and ¢ is on the right, and (ii) ¢; and ¢, are r-neighbors.

¢ 23
P12
120 o e oo (R Qi .
ok 14l 17! 90! For example, Cell 11 is an r-
10-—p2-0p9 neighbor of Cell 5, while Cell 15
8’03 Lo ?;c 13, 16, 21_(';})1325 is not. In other words, we need to
I pi 01 .. consider the cell pair (5, 11), but
20 L8Oy 1200 P
6 thocoboocb-SSoooL__oLo not (5, 15).
' P4 ! Pro,
1 1 50 11){ 1 150 19,
4eepecr o6 roroor- Cells 1, 2, 3, 18, 19, 20, 21, 22,
Y U 23, 24, and 25 can be immedi-
err*ggn ately discarded (why?).
[O A I
0 2 4 8 10 12

INFS4205/7205, Uni of Queensland Grid Decomposition — Finding the Closest or Close Pairs

(Closest Pair in 2D)

Observation: Each non-empty cell ¢ on the left of ¢ has at most
10 = O(1) r-neighbor cells on the right of £.

¢ #
120 = mp e mpm e mfe oo P <
-
— 1o 14017 1 22
1 1 ng 1 1
0= or == mr o= O
| 9 25
3 g | P10 21
8=--r-==pr-O-f-mmr-mmp -0 -
-2 Vs | o 120 24
D1 | 12 ' |
o 7 R T
—1 150 11150 19,
7 < A A
I 7
) I bohs | 10 I I
2 U A A A
' ' 6 ' ' gn.
-) | | :
I I O O O
0 2 4 s 10 12

For example, for Cell 8, we need to consider 8 pairs: (8, 10), (8, 11), (8,
12), (8, 13), (8, 14), (8, 15), (8, 16), (8, 17).

INFS4205/7205, Uni of Queensland Grid Decomposition — Finding the Closest or Close Pairs

(Closest Pair in 2D)

The above discussion motivates the following algorithm for finding a
crossing closest pair within distance r:

—

for every non-empty cell ¢; on the left of £
for every r-neighbor cell ¢, of 1 on the right of £
3. calculate the distance of each pair of
points (p]_,p2) S Cl(P) X C2(P)
4. return the closest one among all the pairs inspected at Line 3, if the
pair has distance at most r.

N

As mentioned, for each ¢y, there are O(1) cells ¢, that need to be
considered. Since ¢;(P) and c;(P) each contain at most 2 points, each
execution of Line 3 takes only O(1) time. The overall algorithm takes
O(n) expected time in total.

Think: How to find the cells ¢, for each ¢; in O(1) expected time? Hint:
by hashing on the cell ids.

INFS4205/7205, Uni of Queensland Grid Decomposition — Finding the Closest or Close Pairs

(Closest Pair in 2D: Analysis)

Let 7(n) be the expected running time of our algorithm, it follows that
f(n) < 2-f(n/2)+ O(n)

while f(n) = O(1) for n < 2.

The recurrence solves to f(n) = O(nlog n).

INFS4205/7205, Uni of Queensland Grid Decomposition — Finding the Closest or Close Pairs

(Closest Pair in d-dimensional Space)

Our algorithm can be extended directly to d-dimensional space.

The only difference is that, we should impose a d-dimensional grid, where
each cell is a d-dimensional square with side length r/\/d (this ensures
that a diagonal of every cell has length r).

Recall that, to ensure O(nlog n) running time, we relied on the following
fact in 2D:

Each non-empty cell ¢; on the left of £ has O(1) r-neighbor cells
¢ on the right of /.

We will prove that this is true regardless of d (as long as d is a constant,
i.e., it has nothing related to n).

Plugging this fact into the earlier analysis immediately shows that the
algorithm runs in O(nlog n) expected time for any constant d.

INFS4205/7205, Uni of Queensland Grid Decomposition — Finding the Closest or Close Pairs

(Closest Pair in d-dimensional Space)

Lemma: In d-dimensional space, each non-empty cell ¢; on the left of ¢
has O(1) non-empty cells ¢, on the right of ¢ satisfying
mindist(cy,) < r.

Proof: Extend each boundary face of ¢; outwards by a length of r. This
gives a d-dimensional square of side length 2r + r/+v/d. The square
intersects with at most

2r +r/\/d ‘ d
\‘2—‘:— I’/\/EJ < \‘Z\Fd—F?}J = O(l)

cells. O

Remark: The calculation in the proof is very loose. For example, many
of the cells in the “enlarged” square are on the left of £, but are counted
anyway. However, the number of cells is still O(1) even after the
over-counting.

INFS4205/7205, Uni of Queensland Grid Decomposition — Finding the Closest or Close Pairs

The success behind our grid decomposition technique in the closest-

pair problem comes from the property that, each cell in the grid
has O(1) r-neighbor cells.

We now proceed to tackle the close-pairs problem by essentially
using the same property. Recall that our objective is to achieve
O(n+ k) expected time, where k is the number of pairs reported.

INFS4205/7205, Uni of Queensland Grid Decomposition — Finding the Closest or Close Pairs

Recall the definition of the close-pairs problem.

Let P be a set of distinct points RY and r a real value. The
objective of the close pairs problem is to output all pairs of distinct
points p, g € P satisfying:

dist(p,q) < r.

We will focus on 2D space, because the algorithm can be directly
extended to arbitrary dimensionalities.

INFS4205/7205, Uni of Queensland Grid Decomposition — Finding the Closest or Close Pairs

(Close Pairs in 2D)

We will explain the algorithm using the same dataset and r = 4/2.

P12
12— ------ Fe------ m-——— G-
Op;y 1 1
1 1
10— o5 9P s
1 1 1
—O
i Pe : P13
N e F-G--=-- Femm--- -
1 Psi 1
— i i
6™ . a4 LT
L Qﬁ% 1 gm 1
pr ! i
] S R SR -
1 i 1
— 1 1 1
D5 1 1
2 | 1
PO S
— 1 1 1
S O I
0 2 4 6 8 10 12

Step 1: Impose an arbitrary grid where each square cell has side length
r/\/2 = 4. |dentify all the non-empty cells (there are 8 such cells in our
example).

5, Uni of Queensland Grid Decomposition — Finding the Closest or Close Pairs

(Close Pairs in 2D)

Step 2: For each cell ¢, let c(P) be the set of points covered by c.
Simply report all pairs of distinct points in ¢(P)—notice that any two
points in the same cell must have distance at most r.

P12

120 o c e e S N Ooop-
— ol : ‘
10— 2 | 5 o g
IOPZ 1 1 1

" De . P13

) — F-G----- PR -
N :
1 1 1 1

6—0 7

’ ! 2 : P
—] O 1
1 P 1

Y| S R Gopmmmmmmm -
] 1]
— 1 1 1
v D5 1 1

— 6

2 PO S
— 1 1 O 1
I O O

0 2 4 6 8 10 12

(Close Pairs in 2D)

Step 3: For each cell ¢y, identify all of its r-neighbor cells ¢c,. For every
¢y, inspect all pairs of distinct points (p1, p2) € c1(P) x c2(P), and
report the ones within distance at most r.

P12
12~ - o - - SRS e Oy -
— O[kul ! '

10— | 5 o 8 |
70172 1 1 1

. Pe : P13
8lmmm oo - F-G----- Fe———-- -
=, i o™ i

1 1 1 1

6—o0 4 7

’ ! :U4 : P1o :
— @ o ¢} 1

1 P 1
Y P Glpmmmmm - .-
] 1]

) L P . l
- P03 Pl
— 1 1 O

N T N O

0 2 4 6 8 10 12

For example, from Cells 2, 4, inspect all the 8 pairs in
{p2, p3} X {pa, ps, pr, Ps}, and report (p2, pa), (P2, Ps), (P3, P6)-

INFS4205/7205, Uni of Queensland Grid Decomposition — Finding the Closest or Close Pairs

(Close Pairs in 2D: Analysis)

Next, we will prove that our algorithm runs in O(n + k) expected time.
At first glance, this may look a bit surprising. Recall that in Step 3, for
each pair of r-neighbor cells (ci, ¢;), we spend a quadratic amount of
time O(|c1(P)]|c2(P)]), but risk finding no answer pairs at all. Indeed,
the core of the analysis is to show that the total time of doing so is
bounded by O(n + k).

We will focus on Steps 2 and 3 because Step 1 obviously takes O(n)
expected time (by hashing).

INFS4205/7205, Uni of Queensland Grid Decomposition — Finding the Closest or Close Pairs

(Close Pairs in 2D: Analysis (Step 2))

Let ¢, ¢, ..., Cmy be the non-empty cells, for some m > 1. Define
n; = |¢i(P)|, namely, the number of points covered by c;, for each
i € [1,m]. Clearly Y>> n; > n.

The cost of Step 2 is obviously

Notice that

We thus have

INFS4205/7205, Uni of Queensland Grid Decomposition — Finding the Closest or Close Pairs

CCIose Pairs in 2D: Analysis (Step 3))

We will prove that the cost of Step 3 is >/~ O(n?), and therefore,
bounded by O(n + k).

Let ¢; and ¢; be a pair of r-neighbor cells. Step 3 spends O(n; - n;) time
to process ¢;(P) x ¢j(P). Clearly:

ni-nj < (n,2 + nJ?)/Q.

INFS4205/7205, Uni of Queensland

Grid Decomposition — Finding the Closest or Close Pairs

(Close Pairs in 2D: Analysis (Step 3))

The total cost of Step 3 can be written as

m
0] E E n; - nj
i=1 j: ¢ is an r-neighbor of ¢
m
— 2 2
= 0 E E (n; +n7)
i=1 j: ¢ is an r-neighbor of ¢

(by the inequality of the previous slide)

As a cell has O(1) r-neighbor cells, we know that each n? can appear
only O(1) times in the above summation. Therefore, the summation is
bounded by O(>"1", n?).

1

We now conclude that the running time of our close-pairs algorithm is
O(n + k) expected.

INFS4205/7205, Uni of Queensland Grid Decomposition — Finding the Closest or Close Pairs

