
High Dimensional Indexing by Clustering

Yufei Tao

ITEE
University of Queensland

INFS4205/7205, Uni of Queensland High Dimensional Indexing by Clustering



Recall that, our discussion so far has assumed that the dimensionality d
is “moderately high”, such that it can be regarded as a constant. This
means that d should be smaller a sufficiently slow-growing function of
the dataset size n (such as log2 log2 n), such that even an exponential
value like 2d is not too large.

Today we will enter a new chapter of the course, where we will discuss
how to deal with very high dimensionality d that defeats the
aforementioned assumption. In general, the higher d is, the harder data
analysis becomes. In computer science, typically two vastly different sets
of techniques are used to process data with moderately high and truly
high d , respectively. Indeed, when d reaches as low as 10, the techniques
we have discussed so far would not work well in practice.

This lecture will revisit the topic of indexing, namely, how to build a data

structure to accelerate query processing.

INFS4205/7205, Uni of Queensland High Dimensional Indexing by Clustering



Applications of High Dimensional Data

To be effective, many machine learning techniques require extracting a
large number of features from the underlying objects.

For example, in evaluating the similarity of documents, each dimension
may be a word, such that the coordinate of a document on the dimension
is the number of occurrences of the word. The dimensionality can be as
high as the number of English words.

Similar examples can be found in speech recognition, face recognition,
sentiment analysis, image retrieval, customer profiling, etc.

INFS4205/7205, Uni of Queensland High Dimensional Indexing by Clustering



Curse of Dimensionality

Recall that, when d is moderately high, the R-tree is a useful structure
that can be used to accelerate many types of queries. Unfortunately, the
R-tree gradually becomes useless as d increases. As we analyzed in a
previous lecture, in an optimal R-tree, each leaf MBR should be a square
whose side length is at the order of (each dimension has a length of 1)

(B/n)1/d

where B is the number of points a leaf node should contain.

Note: Although our analysis was based on the “uniform distribu-
tion”, similar conclusions can be obtained on other distributions as
well (hint: replace 0.99 in the derivation of that lecture with any
smaller constant gives the same result).

INFS4205/7205, Uni of Queensland High Dimensional Indexing by Clustering



Curse of Dimensionality

Setting B = 1 for convenience and considering n = 106, we have:

d = 2: (1/n)1/d = 0.001

d = 10: (1/n)1/d = 0.251

d = 100: (1/n)1/d = 0.871

d = 1000: (1/n)1/d = 0.986.

In other words, when d is large, each leaf MBR (even of an optimal
R-tree) is nearly as large as the data space, such that the R-tree becomes
almost useless!

The phenomenon that (essentially) every index structure becomes

increasingly useless when d grows is known as the curse of

dimensionality.

INFS4205/7205, Uni of Queensland High Dimensional Indexing by Clustering



Today we will discuss an alternative approach—called the clustering
method—to index multidimensional data. This approach complements
the advantages and disadvantages of the R-tree:

It is less effective than the R-tree when the dimensionality is
relatively low (e.g., ≤ 5).

However, on practical data distributions, the approach deteriorates
at a slower rate than the R-tree, such that it actually performs
better than the R-tree in a higher range of d .

INFS4205/7205, Uni of Queensland High Dimensional Indexing by Clustering



We will use nearest neighbor search as the example query type. Recall:

Let P be a set of d-dimensional points in Rd . The (Euclidean)
nearest neighbor (NN) of a query point q ∈ Rd is the point p ∈ P
that has the smallest Euclidean distance to q.

We denote the Euclidean distance between p and q as ‖p, q‖.

INFS4205/7205, Uni of Queensland High Dimensional Indexing by Clustering



Clustering

A cluster is a group of points that are (relatively) close to each other. A
practical dataset often consists of several clusters, where points in
different clusters are far away from each other (think: why so?). The act
of clustering is to discover such clusters.

For example, the dataset below (intuitively) consists of 2 clusters:

o1

o2

o3

o4

o5

o6

o7

o8

o9

o10

o11

o12

o13

INFS4205/7205, Uni of Queensland High Dimensional Indexing by Clustering



Index by Clustering

Suppose that we have found a number, say k , of clusters. For each
cluster, identify a centroid object, which intuitively is a point at the
“middle” of the cluster.

o1

o2

o3

o4

o5

o6

o7

o8

o9

o10

o11

o12

o13

In the above example, o3 (or o9) is a good centroid of the left (or right,

resp) cluster.

INFS4205/7205, Uni of Queensland High Dimensional Indexing by Clustering



Index by Clustering

For each cluster, sort the points therein in ascending order of their
distances to the centroid.

All the sorted lists constitute our index structure.

Example

o1

o2

o3

o4

o5

o6

o7

o8

o9

o10

o11

o12

o13

Left cluster: o3, o1, o4, o2, o5.

Right cluster: o9, o10, o6, o11, o7, o8, o12, o13.

INFS4205/7205, Uni of Queensland High Dimensional Indexing by Clustering



Next we introduce two pruning rules that permit us to deploy the
index to answer NN queries efficiently. Both rules find their roots
in the triangle inequality. Namely, for any three points o, p, q, it
must hold that ‖q, p‖+ ‖o, p‖ ≥ ‖q, o‖.

INFS4205/7205, Uni of Queensland High Dimensional Indexing by Clustering



Pruning Rule 1

Lemma: Consider a cluster C with centroid object c . Let p be an
arbitrary point in C , and q an arbitrary point in the data space.
For any point paft that ranks after p in the sorted list of C , it must
hold that:

‖q, paft‖ ≥ ‖p, c‖ − ‖c , q‖.

Proof:

‖q, paft‖ ≥ ‖paft , c‖ − ‖c , q‖ (triangle inequality)

≥ ‖p, c‖ − ‖c , q‖ (by the definition of p).

INFS4205/7205, Uni of Queensland High Dimensional Indexing by Clustering



Example

o1

o2

o3

o4

o5
q

radius ‖o3, o1‖ − ‖o3, q‖

Recall that the ordering of the cluster is o3, o1, o4, o2, o5. The pruning

rule says that o4, o2, o5 must all be outside the yellow circle.

INFS4205/7205, Uni of Queensland High Dimensional Indexing by Clustering



Pruning Rule 2

Corollary: Consider a cluster C with centroid object c . Let pfar be
the point in C that is the farthest to c . Let q be an arbitrary point
in the data space. Then, any point in C must have a distance to
q at least:

‖q, c‖ − ‖c , pfar‖.

Proof: Let p be an arbitrary point in C . Then:

‖q, p‖ ≥ ‖q, c‖ − ‖c , p‖ (triangle inequality)

≥ ‖q, c‖ − ‖c , pfar‖ (by the definition of pfar ).

INFS4205/7205, Uni of Queensland High Dimensional Indexing by Clustering



Example

o1

o2

o3

o4

o5

o6

o7

o8

o9

o10

o11

o12

o13

q

radius ‖q, o9‖ − ‖o9, o13‖

The pruning rule says that all the points in the right cluster must all be

outside the yellow circle.

INFS4205/7205, Uni of Queensland High Dimensional Indexing by Clustering



NN Algorithm

Given a query point q, we can find its NN as follows. Let pnn the point
found to be nearest to q so far (at the beginning, set pnn to NULL and
define ‖q, NULL‖ =∞).

1. Let C be the cluster whose centroid c is the closest to q.

2. Scan the points of C by the order as stored in the index. Stop as
soon as coming across a point p such that
‖p, c‖ − ‖c , q‖ > ‖q, pnn‖.

3. For every other cluster C ′ with centroid c ′:

3.1 Prune C ′ if ‖q, c ′‖ − ‖c ′, pfar‖ > pnn where pfar is the last
point in the sorted order of C ′.

3.2 Otherwise, scan everything in C ′.

INFS4205/7205, Uni of Queensland High Dimensional Indexing by Clustering



Example

o1

o2

o3

o4

o5

o6

o7

o8

o9

o10

o11

o12

o13

q

radius ‖q, o9‖ − ‖o9, o13‖

radius ‖o3, o1‖ − ‖o3, q‖

First, we scan the left cluster. After seeing o3, pnn is updated to o3.
Then, the algorithm reads o1, which does not change o3. The scan of the
cluster terminates right here.

The right cluster is pruned directly.

INFS4205/7205, Uni of Queensland High Dimensional Indexing by Clustering



In practice, we usually partition the dataset into more clusters (e.g.,
somewhere from 10 to 100). The hope is that only a small number
of clusters need to be scanned in answering a NN query. This is
often the case when the query point falls in some cluster, which in
turn often happens in practice (think: why?).

INFS4205/7205, Uni of Queensland High Dimensional Indexing by Clustering



But there is one important issue left: how to perform the cluster-
ing?

Next, we introduce the k-center algorithm which is a simple and
yet effective algorithm with attractive theoretical guarantees.

INFS4205/7205, Uni of Queensland High Dimensional Indexing by Clustering



Let us first formalize the problem:

Let P be a set of n points in Rd , and k be an integer at most n.
Let S be a set of objects in Rd ; we refer to S as a centroid set.
Define for each object p ∈ P, its centroid distance as

dS(p) = min
c∈S
‖p, c‖.

The radius of C is defined to be

r(S) = max
o∈P

dC (o).

The goal of the k-center problem is to find a centroid set S of size
k with the minimum radius.

INFS4205/7205, Uni of Queensland High Dimensional Indexing by Clustering



Example

o1

o2

o3

o4

o5

o6

o7

o8

o9

o10

o11

o12

o13

For k = 2, the optimal solution is S = {o3, o9} with r(S) = ‖o9, o13‖.
A suboptimal solution is S ′ = {o1, o13} with r(S ′) = ‖o7, o13‖.

INFS4205/7205, Uni of Queensland High Dimensional Indexing by Clustering



This problem is NP-hard, namely, no algorithm can solve the problem in
time polynomial to both n and k (unless P = NP). Hence, we will aim to
find approximate answers with precision guarantees.

Let S∗ be an optimal centroid set for the k-center problem. A set S of k

objects is ρ-approximate if r(S) ≤ ρ · r(S∗). We will give an algorithm

that guarantees to return a 2-approximate solution.

INFS4205/7205, Uni of Queensland High Dimensional Indexing by Clustering



A 2-Approximate Algorithm

algorithm k-center (P)

/* this algorithm returns a 2-approximate subset S */

1. S ← ∅
2. add to S an arbitrary object in P
2. for i = 2 to k
3. o ← an object in P with the maximum dS(o)
4. add o to S
5. return S

The algorithm can be easily implemented in O(nk) time.

INFS4205/7205, Uni of Queensland High Dimensional Indexing by Clustering



Example

Set k = 3.

c1

Initially, S = {c1}

INFS4205/7205, Uni of Queensland High Dimensional Indexing by Clustering



Example

Set k = 3.

c1
c2

After a round, S = {c1, c2}

INFS4205/7205, Uni of Queensland High Dimensional Indexing by Clustering



Example

Set k = 3.

c1
c2

c3

After another round, S = {c1, c2, c3}

INFS4205/7205, Uni of Queensland High Dimensional Indexing by Clustering



Example

Set k = 3.

c1
c2

c3

r(S) is the radius of the largest circle.

INFS4205/7205, Uni of Queensland High Dimensional Indexing by Clustering



Theorem: The k-center algorithm is 2-approximate.

Proof: Let S∗ = {c∗1 , c∗2 , ..., c∗k } be an optimal centroid set, i.e., it has
the smallest radius r(S∗). Let C∗1 ,C

∗
2 , ...,C

∗
k be the optimal clusters,

namely, C∗i (1 ≤ i ≤ k) contains all the objects that find c∗i as the
closest centroid among all the centroids in S∗.

Let S = {c1, c2, ..., ck} be the output of our algorithm. We want to prove
r(S) ≤ 2r(S∗).

INFS4205/7205, Uni of Queensland High Dimensional Indexing by Clustering



Case 1: S has an object in each of C∗1 ,C
∗
2 , ...,C

∗
k .

Take any object o ∈ P. We will prove that dS(o) ≤ 2r(S∗), which
implies that r(S) ≤ 2r(S∗).

Suppose that o ∈ C∗i (for some i ∈ [1, k]), and c is an object in S ∩C∗i .
It holds that:

dS(o) ≤ ‖c , o‖
≤ ‖c , c∗‖+ ‖c∗, o‖
≤ 2r(S∗).

INFS4205/7205, Uni of Queensland High Dimensional Indexing by Clustering



Case 2: At least one of C∗1 , ...,C
∗
k covers no object in S . By the pigeon

hole principle, one of C∗1 , ...,C
∗
k must cover at least two objects

c1, c2 ∈ S . It thus follows that

‖c1, c2‖ ≤ 2r(S∗).

Next we will prove r(S) ≤ ‖c1, c2‖ which will complete the whole proof.

Without loss of generality, assume that c2 was picked after c1 by our

algorithm. Hence, c2 has the largest centroid distance at this moment

(by how our algorithm runs). Therefore, any object o ∈ P has a centroid

distance at most dist(c1, c2) at this moment. Its centroid distance can

only decrease in the rest of the algorithm. It thus follows that

r(S) ≤ dist(c1, c2).

INFS4205/7205, Uni of Queensland High Dimensional Indexing by Clustering


