The B-Tree

Yufei Tao
ITEE
University of Queensland

Before ascending into d-dimensional space \mathbb{R}^{d} with $d>1$, this lecture will focus on one-dimensional space, i.e., $d=1$. We will review the B-tree, which is a fundamental structure that can be used to process many types of queries on one-dimensional points.

Range Reporting

Let S be a set of points in \mathbb{R}. Given an interval $q=[x, y]$, a range query returns $S \cap q$, namely, all the points in S that are covered by q.

Example

- Assume $S=\{1,13,17,25,36,49,52,67\}$.
- For $q=[5,20]$, the result is $\{13,17\}$.
- For $q=[27,30]$, the result is \emptyset.

Computation model

- We assume that the input set S does not fit in memory, and thus needs to be stored in the disk.
- The disk has been formatted into blocks (also called pages), such that each block has the same size, e.g., 4096 bytes.
- An I / O either reads a block from the disk into memory, or writes a block of memory to the disk.
- We measure the cost of an operation in the number of I/Os that need to be performed.

Naively, we can solve any range query by scanning the whole S, but the cost is obviously prohibitive. The B-tree allows us to do much better.

B-tree

- Each leaf node has between $B / 2$ and B data elements, where B is a parameter that is at least 3 . The only exception takes place when the leaf is the root, in which case it can have any number of elements. All the leaf nodes are at the same level.
- Each internal node has between $B / 2$ and B child nodes, except that the root can have as few as 2 child nodes.

B-tree (cont.)

- For any node u, denote by S_{u} the set of elements in the subtree of u. Now let u be an internal node with child nodes $v_{1}, \ldots, v_{f}(f \leq B)$.
- All the data elements in $S_{v_{i}}$ must be strictly smaller than any data element in $S_{v_{j}}$ for any $1 \leq i<j \leq f$.
- For each $v_{i}(i \leq f), u$ stores the smallest element $r\left(v_{i}\right)$ in $S_{v_{i}}$, which is referred to as a routing element.

Note that $r(u)=r\left(v_{1}\right)$.

Example

$B=3$

In practice, the leaf nodes are connected in a doubly-linked list, sorted by their natural ordering.

Think: How to construct a B-tree if the dataset S has been sorted?

- Let S be a set of real values. The successor (or predecessor) of a value x in S is the smallest (or largest, resp.) value in S that is at least (most, resp.) x.

For example, given $S=\{1,13,17,25\}$, the successors of 10 and 13 are both 13 , while the predecessor of 12 is 1 .

- Given a B-tree T on S, we can find the successor of any x by visiting a single root-to-leaf path in T :
(1) Set u to the root of T.
(2) If u is a leaf, return the successor of x among the elements in u.
(3) Otherwise, find the predecessor of x among the (routing) elements in u. Let it be the $r(v)$ of some child node v of u. Set u to v and go to Step 2.

Example

u_{1}, u_{2}, u_{5} are accessed to retrieve the successor of 20 .

Cost $=3 \mathrm{I} / \mathrm{Os}$.

Answering A Range Query $q=[x, y]$
(1) Locate the leaf u containing the successor of x.
(2) Report all elements in u that fall in q.
(3) If no element in u is greater than y, set u to the succeeding leaf node, and go to Step 2.

Example

The algorithm accesses $u_{1}, u_{2}, u_{5}, u_{6}$, and u_{7} to answer a range query with $q=[20,75]$.

Think: How should the algorithm be adapted if leaf nodes are not linked together?

Insertion
To insert a value x into a B-tree:
(1) Find the leaf node u that should accommodate x without violating the B-tree definition. Add x to u.
(2) If u has no more than B elements, the insertion is complete. Otherwise, u verflows.

Overflow Handling

Let u be the node that overflows.
(1) Create a new node u^{\prime}.
(2) Split the elements of u in two halves, respecting their ordering. Put the first (second) half in $u\left(u^{\prime}\right)$.
(3) Insert $r\left(u^{\prime}\right)$ into the parent p of u.
(4) If p has no more than B elements, done. Otherwise, handle the overflow at p in the same way.

The changes may propagate all the way up. If the root splits, create a new root.

Example

The insertion of 20 makes u_{5} overflow.

Example (cont.)

u_{5} splits, and generates u_{5}^{\prime}.

Example (cont.)

$r\left(u_{5}^{\prime}\right)=25$ is added to u_{2}, which overflows.

Example (cont.)

u_{2} splits, and generates u_{2}^{\prime}.

Example (cont.)

$p\left(u_{2}^{\prime}\right)$ is added the root. Done!

Deletion

To delete a value x from a B-tree:
(1) Find the leaf node u that contains x. Remove x from u.
(2) If x is the smallest element in u, adjust the routing elements in the ancestors of u appropriately.
(3) If u is the root or has at least $B / 2$ elements, the deletion is complete. Otherwise, u underflows.

Underflow Handling

Let u be the node that underflows, and u^{\prime} be the right sibling of u (if u does not have a right sibling, set u^{\prime} to its left sibling, and swap u and u^{\prime} in the below):
(1) If u and u^{\prime} contain no more than B elements in total, perform a merge:

- Put all the elements in u.
- Remove $r\left(u^{\prime}\right)$ from the parent p of u.
- If p underflows, handle it in the same way.
(2) Otherwise, perform a share:
- Distribute the elements in u and u^{\prime} equally between them.
- Modify $r\left(u^{\prime}\right)$ in p.

If the root ends up having only one child, remove the root.

Example

Deletion of 77 makes u_{7} underflow.

Example (cont.)

Merge u_{7} and u_{7}^{\prime}, and remove $r\left(u_{7}^{\prime}\right)=84$ from p_{3}, causing the underflow of u_{3}.

Example (cont.)

Perform a share between u_{2} and u_{3}. Update $r\left(u_{3}\right)=49$ in u_{1}.

