
INFS 4205/7205: Exercise Set 7

Prepared by Yufei Tao and Junhao Gan

Problem 1. Consider the set P of points as shown in the figure. Suppose that we run the closest
pair algorithm on P . Recall that the algorithm first divides P in halves along the x-dimension
using a vertical line ` (see the figure), recursively solves each half, and then builds a grid. Answer
the following questions:
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1. Draw the grid in the figure.

2. Consider the cell c1 of the grid that covers point p6. Recall that the algorithm needs to pair
up c1 with certain cells c2 on the right of `, in order to compute the distance of (p, q) for
every pair of points p, q covered by c1 and c2, respectively. List the center coordiantes of all
such cells c2.

Solution.
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The center coordinates of all such cells c2 are: (9, 7), (9, 11), (9, 15), (11, 7) and (11, 11).

Problem 2. Let P be a set of points in Rd. Give an O(n log n) expected time algorithm to find
the 2nd closest pair of P . Formally, define T = {{p, q} | p, q ∈ P ∧ p 6= q}. The 2nd closest pair is
the {p, q} ∈ T that has the second smallest dist(p, q) (i.e., Euclidean distance between p, q).

For instance, in the example dataset Problem 1, the 2nd closest pair is (p6, p9) (note that the
first closest pair is (p1, p3)).
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Solution. First find the closet pair (p1, p2). Then, remove p1 from P , and find the closest pair
(p′1, p

′
2) of the remaining points. Now, put back p1, but remove p2 from P , and find the closest pair

(p′′1, p
′′
2) of the remaining points. The second closest pair must be either (p′1, p

′
2) or (p′′1, p

′′
2)

Problem 3. Let ` be a vertical line. Let p be a point on the left of `, and P be a set of points
on the right of `. Define r as the distance of the closest pair of P . We throw away from P all the
points whose distances to ` are greater than r. Define P ′ to be the set of remaining points in P .

For p, we define its r-bounded nearest neighbor (NN) as the point q in P that is closest to p,
among all the points whose distances to p are at most r (if no such points exist, then p has no
r-nearest neighbor).

For example, in the figure below, the closest pair in P = {p1, . . . , p10} is (p5, p7) whose distance
is 2
√

2. Thus, r = 2
√

2 and P ′ = {p1, p2, p3, p4}. If p = p∗1, then p has no r-bounded NNs, while if
p = p∗2, the r-bounded NN of p is p1.
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Consider the following approach of finding the r-bounded NN of p. First, sort P ′ ∪ {p} by
y-coordinate. Then, identify the position of p in the sorted list. Inspect the 20 points before and
after p, respectively (namely, in total 40 points are inspected). Prove that the r-bounded NN (if
exists) must be among those 40 points.

Proof. Impose an arbitrary grid in the data space such that: (i) each cell is an axis-paralleled
square with side length r/

√
2, and (ii) ` is a line in the grid. In the class, we showed that: (i) each

cell covers at most 2 points of P , and (ii) the cell containing p (on the left of `) has at most 10
r-neighbors on the right of `. Thus, at most 20 points can possibly be within distance r from p.
Furthermore, in the sorted list of P ′ ∪ {p} by y-coordinate, all these (at most) 20 points must be
stored consecutively around the position of p in the list. This completes the proof.

Problem 4. Let ` be a vertical line. Let P1 be a set of points on the left of `, and P2 be a set of
points on the right of `. Define r1 (or r2) as the distance of the closest pair in P1 (or P2, resp.),
and r = min{r1, r2}. Suppose that P1 and P2 have been sorted by y-coordinate. Give an O(n)
time (where n = |P1|+ |P2|) algorithm to find, for each p1 ∈ P1, its r-bounded NN in P2.

Solution. Scan P1 (or P2) to obtain a sorted list P ′1 (or P ′2, resp.) containing only the points of
P1 (or P2, resp.) whose distances to ` are at most r. Merge P ′1 and P ′2 into one list P ′, sorted by
y-coordinate. The cost so far is O(n).

Now scan P ′. At any moment, keep the last 20 points seen from P ′1: call it the P ′1-buffer.
Similarly a P ′2-buffer defined in the same way. Every time a point in P ′1 is encountered, calculate
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its distances to the points in the P ′2-buffer, and decide its r-bounded NN accordingly. Every time a
point p2 ∈ P ′2 is encountered, calculate its distance to each point p1 in the P ′1-buffer. If p2 is closer
to p1 than the r-bounded NN of p1, update the r-bounded NN to p2. In this way, each point is
processed in O(1) time. The total time is therefore O(n).

Problem 5. Let P be a set of points in R2. Give an algorithm to find the closest pair of P in
O(n log n) worst case time.

Solution. The algorithm is the same as the one taught in the class, except that we apply the
solution in Problem 4 to find the “crossing” closest pair. A bit of care is used to maintain the
sorted lists, in order to avoid repeated sorting.

• Sort P into separately by x- and y-coordinate, respectively. This gives two sorted lists Lx(P )
and Ly(P ) (each point duplicated twice, once in each list).

• Divide P into two equal halves P1 and P2 by a vertical line `. Partition Lx(P ) into Lx(P1), Lx(P2)
and Ly(P ) into Ly(P1), Ly(P2). The meanings of Lx(P1), Lx(P2), Ly(P1), Ly(P2) follow those
of Lx(P ) and Ly(P ).

• Recursively find the closest pairs in P1 and P2, respectively. Define r1 (or r2) as the distance
of the closest pair in P1 (or P2, resp.), and r = min{r1, r2}.

• For each point p of P1, compute the r-bounded NN q in P2 with respect to ` by utilizing the
sorted lists Ly(P1) and Ly(P2). Pick the closest one among all such pairs (p, q) as the crossing
closest pair.

• Return the best among the three pairs: the one reported in P1, the one reported in P2 and
the crossing closest pair.

By the algorithm in Problem 4, the crossing closest pair between P1 and P2 can be computed
in O(|P1|+ |P2|) worst case time. The total running time is therefore bounded by O(n log n) worst
case time.
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