INFS 4205/7205: Exercise Set 7

Prepared by Yufei Tao and Junhao Gan

Problem 1. Consider the set P of points as shown in the figure. Suppose that we run the closest pair algorithm on P. Recall that the algorithm first divides P in halves along the x-dimension using a vertical line ℓ (see the figure), recursively solves each half, and then builds a grid. Answer the following questions:

1. Draw the grid in the figure.
2. Consider the cell c_{1} of the grid that covers point p_{6}. Recall that the algorithm needs to pair up c_{1} with certain cells c_{2} on the right of ℓ, in order to compute the distance of (p, q) for every pair of points p, q covered by c_{1} and c_{2}, respectively. List the center coordiantes of all such cells c_{2}.

Solution.

The center coordinates of all such cells c_{2} are: $(9,7),(9,11),(9,15),(11,7)$ and $(11,11)$.
Problem 2. Let P be a set of points in \mathbb{R}^{d}. Give an $O(n \log n)$ expected time algorithm to find the 2nd closest pair of P. Formally, define $T=\{\{p, q\} \mid p, q \in P \wedge p \neq q\}$. The 2nd closest pair is the $\{p, q\} \in T$ that has the second smallest $\operatorname{dist}(p, q)$ (i.e., Euclidean distance between p, q).

For instance, in the example dataset Problem 1, the 2nd closest pair is (p_{6}, p_{9}) (note that the first closest pair is $\left.\left(p_{1}, p_{3}\right)\right)$.

Solution. First find the closet pair $\left(p_{1}, p_{2}\right)$. Then, remove p_{1} from P, and find the closest pair ($p_{1}^{\prime}, p_{2}^{\prime}$) of the remaining points. Now, put back p_{1}, but remove p_{2} from P, and find the closest pair $\left(p_{1}^{\prime \prime}, p_{2}^{\prime \prime}\right)$ of the remaining points. The second closest pair must be either $\left(p_{1}^{\prime}, p_{2}^{\prime}\right)$ or $\left(p_{1}^{\prime \prime}, p_{2}^{\prime \prime}\right)$

Problem 3. Let ℓ be a vertical line. Let p be a point on the left of ℓ, and P be a set of points on the right of ℓ. Define r as the distance of the closest pair of P. We throw away from P all the points whose distances to ℓ are greater than r. Define P^{\prime} to be the set of remaining points in P.

For p, we define its r-bounded nearest neighbor (NN) as the point q in P that is closest to p, among all the points whose distances to p are at most r (if no such points exist, then p has no r-nearest neighbor).

For example, in the figure below, the closest pair in $P=\left\{p_{1}, \ldots, p_{10}\right\}$ is (p_{5}, p_{7}) whose distance is $2 \sqrt{2}$. Thus, $r=2 \sqrt{2}$ and $P^{\prime}=\left\{p_{1}, p_{2}, p_{3}, p_{4}\right\}$. If $p=p_{1}^{*}$, then p has no r-bounded NNs, while if $p=p_{2}^{*}$, the r-bounded NN of p is p_{1}.

Consider the following approach of finding the r-bounded NN of p. First, sort $P^{\prime} \cup\{p\}$ by y -coordinate. Then, identify the position of p in the sorted list. Inspect the 20 points before and after p, respectively (namely, in total 40 points are inspected). Prove that the r-bounded NN (if exists) must be among those 40 points.

Proof. Impose an arbitrary grid in the data space such that: (i) each cell is an axis-paralleled square with side length $r / \sqrt{2}$, and (ii) ℓ is a line in the grid. In the class, we showed that: (i) each cell covers at most 2 points of P, and (ii) the cell containing p (on the left of ℓ) has at most 10 r-neighbors on the right of ℓ. Thus, at most 20 points can possibly be within distance r from p. Furthermore, in the sorted list of $P^{\prime} \cup\{p\}$ by y-coordinate, all these (at most) 20 points must be stored consecutively around the position of p in the list. This completes the proof.

Problem 4. Let ℓ be a vertical line. Let P_{1} be a set of points on the left of ℓ, and P_{2} be a set of points on the right of ℓ. Define r_{1} (or r_{2}) as the distance of the closest pair in P_{1} (or P_{2}, resp.), and $r=\min \left\{r_{1}, r_{2}\right\}$. Suppose that P_{1} and P_{2} have been sorted by y-coordinate. Give an $O(n)$ time (where $n=\left|P_{1}\right|+\left|P_{2}\right|$) algorithm to find, for each $p_{1} \in P_{1}$, its r-bounded NN in P_{2}.

Solution. Scan P_{1} (or P_{2}) to obtain a sorted list P_{1}^{\prime} (or P_{2}^{\prime}, resp.) containing only the points of P_{1} (or P_{2}, resp.) whose distances to ℓ are at most r. Merge P_{1}^{\prime} and P_{2}^{\prime} into one list P^{\prime}, sorted by y -coordinate. The cost so far is $O(n)$.

Now scan P^{\prime}. At any moment, keep the last 20 points seen from P_{1}^{\prime} : call it the P_{1}^{\prime}-buffer. Similarly a P_{2}^{\prime}-buffer defined in the same way. Every time a point in P_{1}^{\prime} is encountered, calculate
its distances to the points in the P_{2}^{\prime}-buffer, and decide its r-bounded NN accordingly. Every time a point $p_{2} \in P_{2}^{\prime}$ is encountered, calculate its distance to each point p_{1} in the P_{1}^{\prime}-buffer. If p_{2} is closer to p_{1} than the r-bounded NN of p_{1}, update the r-bounded NN to p_{2}. In this way, each point is processed in $O(1)$ time. The total time is therefore $O(n)$.

Problem 5. Let P be a set of points in \mathbb{R}^{2}. Give an algorithm to find the closest pair of P in $O(n \log n)$ worst case time.

Solution. The algorithm is the same as the one taught in the class, except that we apply the solution in Problem 4 to find the "crossing" closest pair. A bit of care is used to maintain the sorted lists, in order to avoid repeated sorting.

- Sort P into separately by x- and y-coordinate, respectively. This gives two sorted lists $L_{x}(P)$ and $L_{y}(P)$ (each point duplicated twice, once in each list).
- Divide P into two equal halves P_{1} and P_{2} by a vertical line ℓ. Partition $L_{x}(P)$ into $L_{x}\left(P_{1}\right), L_{x}\left(P_{2}\right)$ and $L_{y}(P)$ into $L_{y}\left(P_{1}\right), L_{y}\left(P_{2}\right)$. The meanings of $L_{x}\left(P_{1}\right), L_{x}\left(P_{2}\right), L_{y}\left(P_{1}\right), L_{y}\left(P_{2}\right)$ follow those of $L_{x}(P)$ and $L_{y}(P)$.
- Recursively find the closest pairs in P_{1} and P_{2}, respectively. Define r_{1} (or r_{2}) as the distance of the closest pair in P_{1} (or P_{2}, resp.), and $r=\min \left\{r_{1}, r_{2}\right\}$.
- For each point p of P_{1}, compute the r-bounded NN q in P_{2} with respect to ℓ by utilizing the sorted lists $L_{y}\left(P_{1}\right)$ and $L_{y}\left(P_{2}\right)$. Pick the closest one among all such pairs (p, q) as the crossing closest pair.
- Return the best among the three pairs: the one reported in P_{1}, the one reported in P_{2} and the crossing closest pair.

By the algorithm in Problem 4, the crossing closest pair between P_{1} and P_{2} can be computed in $O\left(\left|P_{1}\right|+\left|P_{2}\right|\right)$ worst case time. The total running time is therefore bounded by $O(n \log n)$ worst case time.

