
INFS 4205/7205: Exercise Set 6

Prepared by Yufei Tao and Junhao Gan

Problem 1. Consider the following instance of 1D sorted rectangles-join-points problem. Recall
that we discussed an algorithm in the class, which maintains a linked list L as it processes the
intervals and points from left to right. Answer the following questions:

• What are the contents right before the algorithm processes point p3?

• What are the contents right after processing point p3?

p1 p2 p3 p4 p5

r1 r4

r2

r3 r5

r6

Solution. L = {r2, r3, r4, r5} right before processing p3. L = {r2, r5} right after processing p3.

Problem 2. Consider running the 2D rectangles-join-points algorithm (as discussed in the class) on
the input shown in the figure below (5 rectangles and 7 points). The algorithm first divides the data
space using the red line, and then recursively processes the left and right of the line, respectively.
Accordingly, in the recursion hierarchy, there are two child nodes of the root: corresponding to the
processing on left and right of the line, respectively.

Let us focus on the right child of the root in the recursion hierarchy, where the algorithm
processes (i) rectangles r1, r2, r3, r4, and r5 (note that rectangles r1, r4, r5 are “3-sided”, namely,
their right edges are aligned with the right boundary of the data space), and (ii) points p4, p5, p6,
and p7. Here, the algorithm needs to construct a 1D instance of the rectangles-join-points problem.
What are the intervals and points in this instance?

2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

0

r1

r2

r3
r4 r5

p1

p2

p3 p5

p4

p6

p7

Solution. The 1D instance at the highest level of recursion consists of: (i) a set R of intervals
{[8, 14], [2, 9]} (i.e., y-projections of rectangles r1, r4), and (ii) a set P of 1D points {15, 5, 12, 7}
(i.e., y-projections of points p4, p5, p6, p7).

Problem 3. In the segment join problem, we are given a set H of horizontal segments, and a set
V of vertical segments, both in R2. We want to report all pairs of (h, r) ∈ H × V such that h

1

intersects r. Design an algorithm to do so in O(n log n+ k) time, where n = |H|+ |V |, and k is the
number of pairs in the result.

Solution. The algorithm accepts inputs: H, V (as stated in the problem), and a set X of x-
coordinates. At the beginning of the algorithm, X consists of (i) the x-coordinates of all the
segments in V , (ii) the value x1 for every interval [x1, x2] × y in H, provided that x1 6= −∞, and
(iii) the value x2 for every interval [x1, x2]×y in H, provided that x2 6=∞. If an horizontal interval
[x1, x2]× y has either x1 or x2 in X, we say that it contributes to X.

• Let Rspan be the set of horizontal segments of H that do not contribute to X.

• Construct an instance of the 1D rectangles-join-points problem with a set R of intervals and
a set P of points decided as follows. R is obtained by projecting all the segments of V onto
y-axis, and P is obtained by projecting all the segments of Rspan onto y-axis. Solve this 1D
instance.

• Divide X into two disjoint subsets X1 and X2 with the same size (by respecting the ordering)
by a vertical line `.

• Let H1 (or H2) be the set of segments in H that intersect with the left (or right, resp.) side
of `. Let V1 (or V2) be the set of segments in V that fall on the left (or right, resp.) side of `.

• Solve the left sub-problem with inputs H1, V1 and X1, and the right sub-problem with inputs
H2, V2 and X2.

Problem 4. In the 2D spatial join problem, we are given two sets—R and S respectively—of
axis-parallel rectangles in R2, and want to report all pairs (r, s) ∈ R × S such that r intersects s.
Design an algorithm to do so in O(n log n + k) time, where n = |R| + |S|, and k is the number of
pairs in the result. Note that the running time should hold in the worst case (as opposed to the
expected case).

Solution. Define:

• H(R) as the set of horizontal edges of the rectangles in R;

• V (R) as the set of vertical edges of the rectangles in R;

• P (R) as the set of corner points of the rectangles in R;

• H(S), V (S), and P (S) similarly for S.

For a pair of intersecting rectangles (r, s), at least one of the following four cases holds: (i) a
horizontal boundary of r intersect a vertical boundary of s, (ii) a vertical boundary r intersect a
horizontal boundary of s, (iii) r is fully contained in s, or (iv) s is fully contained in r. Thus, the
2D spatial join problem can be settled by solving the following four problems:

• A segment join problem with inputs of H(R) and V (S).

• A segment join problem with inputs of H(S) and V (R).

• A 1D rectangles-join-points problem with inputs R and P (S).

• A 1D rectangles-join-points problem with inputs S and P (R).

2

A naive implementation of the above strategy would report (r, s) multiple times. To avoid this,
we utilize the observation that, when (r, s) is discovered by one of these four sub-problems, we
can determine in O(1) time whether it needs to be reported in the other sub-problems as well.
Hence, we can report (r, s) only once by enforcing a reporting convention like “report the pair in
sub-problem i, only if it will not be reported in any sub-problems j < i”. A similar convention can
also be adopted to avoid reporting (r, s) multiple times within each sub-problem.

Problem 5. In this problem, we extend the rectangles-join-points problem to arbitrary dimen-
sionality d. We are given a set R of axis-parallel rectangles, and a set P of points, both in Rd.
The objective is to report all pairs (r, p) ∈ R × P such that rectangle r covers point p. Design an
algorithm to do so in O(n logd−1 n + k) time, where n = |R|+ |P |, and k is the number of pairs in
the result.

Solution. To solve the d-dimensional rectangles-join-points problem, we just need to modify the
2D algorithm described in the slides to construct an instance of the (d − 1)-dimensional (rather
than 1D) rectangles-join-points problem for Rspan. By a similar analysis and plugging in the fact
that the 2D case can be solved in O(n log n + k) time, the running time of the d-dimensional
rectangles-join-points algorithm is bounded by O(n logd−1 n + k).

3

