
INFS 4205/7205: Exercise Set 3

Prepared by Yufei Tao and Junhao Gan

Problem 1. Consider the dataset P = {p1, . . . , p14}, an R-tree on P , and a nearest neighbor query
point q as shown below. Indicate the nodes accessed by the BaB algorithm.

q

0
1 2 3 4 5 6 7

1

2

3

4

5

6

7

8

9

8 90

p1

p2

p3

p4

p5

p6

p7

p8

p9

p10
p11

p12

p14

p13

r1

r2

r3

r4

r5

r6

r7 r8

r9

p1 p2 p3 p4 p5 p6 p7 p9 p10 p11p8 p12 p13 p14

r1 r2 r3 r4 r5 r6

r7 r8 r9

u1 u2 u3 u4 u5 u6

u7 u8 u9

u10

Solution. u10, u8, u4, u3, u9, u6, u7, u2.

Problem 2. Indicate the nodes accessed by the BF algorithm in the example of the previous
problem.

Solution. u10, u8, u9, u7, u2.

Problem 3. Given an axis-parallel rectangle r and a point q in d-dimensional space, describe an
algorithm to compute mindist(q, r) in O(d) time.

Solution. Let [r−[i], r+[i]] be the projection of r on dimension i ∈ [1, d], and q[i] be the coordinate
q on dimension i.

Initialize sqrDist = 0. For each i ∈ [1, d]: (i) if q[i] < r−[i], increase sqrDist by (r−[i]− q[i])2;
(ii) if q[i] > r+[i], increase sqrDist by (q[i] − r+[i])2; (iii) otherwise, do nothing. After processing
all the d dimensions, return mindist(q, r) =

√
sqrDist.

Problem 4. Consider a 2D data space where each dimension has range [0, 1]. Fix an axis-parallel
rectangle r = [0.5, 0.7] × [0.5, 0.8]. Let C be a circle with radius 0.1. Randomly place C such
that the center q of C is uniformly distributed in the data space. What is the probability that C
intersects r (in other words, mindist(q, r) ≤ 0.1)?

Solution. C intersects r if and only if q falls in the gray region shown below:

0.1

0.1

r

0.2

0.3

0.1

1

As a result, the probability equals the area of the gray region, which is 0.2 · 0.3 + 2 · 0.1 · 0.2 + 2 ·
0.1 · 0.3 + 0.12π = 0.16 + 0.01π.

Problem 5 [k Nearest Neighbor Search]. Let P be a set of d-dimensional points in Rd. Given
an integer k and a query point q, a k nearest neighbor (NN) query returns the k points in P with
the smallest (Euclidean) distance to q. This informal definition, however, is ambiguous when some
points are equi-distance to q. Formally, a kNN query returns the minimum subset Q of P that
satisfies the following two conditions:

• |Q| ≥ k

• For every point p ∈ Q and every point p′ ∈ P \ Q, it holds that ‖p, q‖ < ‖p′, q‖ (recall that
‖., .‖ returns the distance of two points).

For example, in below figure, for k = 1, Q = {p1, p2}, and for k = 3, Q = {p1, p2, p3, p4}.

q(5, 5)

p3(1, 5) p4(9, 5)

p1(5, 3)

p2(5, 7)

• Let C be the smallest circle that (i) is centered at q, and (ii) covers all the points of Q.
Suppose that there is an R-tree on P . Prove that any algorithm using the R-tree to answer
the kNN query must access all the nodes whose MBRs intersect C.

• Modify the best first algorithm so that it is guaranteed to access only the nodes whose MBRs
intersect C.

Solution. Let us first prove the first bullet. Suppose that this is not true: there exists an
algorithm such that it terminates without accessing a node u whose MBR intersects C. Then, it
cannot exclude the possibility that u covers a data point falling in C—this point, if exists, must be
reported. This contradicts with the fact that the algorithm is correct.

Next, we modify the BF algorithm for the second bullet. In the modified algorithm, we maintain
two data structures:

• a sorted list H, where each entry in H is either an MBR whose sorting key is its mindist to
q, or a point whose sorting key is its distance to q; and

• a set Q of points.

The modified algorithm works as follows. First, initialize Q = ∅, and insert the MBR of the root to
H. Let plast record the the most recent point added to Q; plast = NULL at the beginning. Next,
repeat the following steps:

• Remove the smallest entry e from H.

• If e is an MBR r, then access the child node u of r. If u is a internal (or leaf) node, add all
the MBRs (or points, resp.) in u to H.

2

• If e is a point p, then add p to Q, and set plast = p.

• If both of the following two conditions hold: (i) |Q| ≥ k, and (ii) either H is empty or ‖plast, q‖
is less than the smallest sorting key in H, terminate the algorithm and return Q.

Problem 6. Define the L0 distance between two d-dimensional points p, q as

L0(p, q) =
d∑

i=1

∣∣∣p[i]− q[i]∣∣∣.
• Draw the locus of all points in the 2D data space R2 that have L0 distance 1 from the origin

(0, 0).

• Re-define mindist(q, r) as the smallest L0 distance from q to the points covered by r. Modify
your algorithm in Problem 3 to compute mindist(q, r) in O(d) time.

• Modify the best first algorithm to answer a nearest neighbor query under the L0 distance
optimally.

Solution. For the first question, the locus is the region in gray:

(0, 0)
(1, 0)(−1, 0)

(0,−1)

(0, 1)

Our algorithm for the second question is analogous to the one in Problem 3. Let [r−[i], r+[i]]
be the projection of r on dimension i ∈ [1, d], and q[i] the coordinate value of q. Initialize dist = 0.
For each dimension i: (i) if q[i] < r−[i], increase dist by r−[i] − q[i]; (ii) if q[i] > r+[i], increase
dist by q[i] − r+[i]; (iii) otherwise, do nothing. After processing all the d dimensions, return
mindist(q, r) = dist.

For the third question, we can simply run the BF algorithm in exactly the way as discussed in
the lecture, replacing Euclidean distance with L0 distance.

3

