INFS 4205/7205: Exercise Set 1

Prepared by Yufei Tao and Junhao Gan

Problem 1. The following figure shows a set of points (labeled a, b, \ldots, o) and also the corresponding R-tree. List all the nodes that need to be accessed in order to answer the range query whose search region is the shaded rectangle.

Solution. u_{8}, u_{3}, u_{2}.
Problem 2. The figure below shows the MBRs of the R-tree in Problem 1 together with a new point p. Draw the MBRs of the R-tree after the insertion of p. Assume that each node can accommodate at most $B=3$ elements.

Solution. It is easy to verify that the choose-subtree algorithm identifies node u_{5} as the leaf node where p should be inserted (see the structure illustrated in Problem 1 for u_{5}). Adding p to u_{5} causes the node to overflow, which is treated by the leaf-split algorithm. The figure below shows the MBRs and the structure of the R-tree after the split. Note that the MBR e_{9} of the new node u_{9} has been inserted into the internal node u_{7}.

At this moment, however, u_{7} overflows, which is treated by the internal-split algorithm. The next figure gives the MBRs and the final structure of the R-tree after the split.

Problem 3. Consider once again the R-tree in Problem 1. Give a range query that returns an empty result but needs to access 6 nodes of the tree.

Solution. The horizontal line q in the figure below is the search region of one such query.

Problem 4. Give an $O(B \log B)$-time implementation for the leaf split algorithm discussed in the class, where B is the maximum number of points in a leaf node.

Solution. Let S be the set of $m=B+1$ points in the (overflowing) leaf node u that the algorithm operates on. Recall that the algorithm processes each of the dimensions in turn. Next, we will describe how to process the x-dimension in $O(m \log m)$ time. The same algorithm works on the other dimensions as well.

As discussed in the class, the algorithm first sorts the points of S by x-coordinate - denote the sorted list by L-and then, tries all the "possible splits" of L. Specifically, a possible split puts the first i points of L into a set $S_{1}[i]$, and the other $m-i$ points into another set $S_{2}[i]$, for every $i \in[\lceil 0.4 B\rceil, m-\lceil 0.4 B\rceil]$. Then, it obtains the perimeters of $M B R\left(S_{1}[i]\right)$ and $M B R\left(S_{2}[i]\right)$. It is thus clear that, if we can obtain the two MBRs in constant time, then the whole algorithm runs in $O(m \log m)$ time.

To achieve the purpose, we only need to perform two scans of L before trying all the possible splits. One scan will produce $\operatorname{MBR}\left(S_{1}[1]\right), M B R\left(S_{1}[2]\right), \ldots, M B R\left(S_{1}[m]\right)$ in an array, while the other scan will produce $M B R\left(S_{2}[1]\right), M B R\left(S_{2}[2]\right), \ldots, M B R\left(S_{2}[m]\right)$ in another array. We will show that each scan takes only $O(m)$ time, and hence, does not affect the overall $O(m \log m)$ complexity.

Due to symmetry, it suffices to explain how to produce $M B R\left(S_{1}[1]\right), \ldots, M B R\left(S_{1}[m]\right)$. First, $\operatorname{MBR}\left(S_{1}[1]\right)$ is simply the first point of L (i.e., a degenerated MBR). Inductively, for any $i \geq 2$, $M B R\left(S_{1}[i]\right)$ can be obtained from $M B R\left(S_{1}[i-1]\right)$ and the i-th point of L in constant time. This completes the description of the entire algorithm for Problem 4.

Remark. The above algorithm works for any constant dimensionality d in $O(m \log m)$ time.
Problem 5. Give a counterexample showing that the leaf split algorithm discussed in the class does not give an optimal split. (Hint: set $B \geq 6$.)

Solution. Set $B=6$. Consider running the split algorithm on the 7 points below. The figure shows the MBRs of the optimal split, which cannot be discovered by the leaf-split algorithm.

