
INFS 4205/7205: Exercise Set 1

Prepared by Yufei Tao and Junhao Gan

Problem 1. The following figure shows a set of points (labeled a, b, ..., o) and also the corresponding
R-tree. List all the nodes that need to be accessed in order to answer the range query whose search
region is the shaded rectangle.

a

b

c

d

e

f

g

h

i

j k

l

m

n
o

e2

e1

e3

e4

e5

e6

e7

q

a b c d e f g h i j k l m n o

e1 e2

e3

e4 e5 e6

e7

u1 u2
u4

u3

u5 u6

u7

u8

Solution. u8, u3, u2.

Problem 2. The figure below shows the MBRs of the R-tree in Problem 1 together with a new
point p. Draw the MBRs of the R-tree after the insertion of p. Assume that each node can
accommodate at most B = 3 elements.

a

b

c

d

e

f

g

h

i

j k

l

m

n
o

e2

e1

e3

e4

e5

e6

e7

p

Solution. It is easy to verify that the choose-subtree algorithm identifies node u5 as the leaf node
where p should be inserted (see the structure illustrated in Problem 1 for u5). Adding p to u5
causes the node to overflow, which is treated by the leaf-split algorithm. The figure below shows
the MBRs and the structure of the R-tree after the split. Note that the MBR e9 of the new node
u9 has been inserted into the internal node u7.

1



a

b

c

d

e

f

g

h

i

j

k
l

m

n
o

e2

e1

e3

e4

e5

e6

e7

p

e9

a b c d e f g h i j k m n o

e1 e2

e3

e4 e5 e6

e7

u1 u2
u4

u3

u5 u6

u7

u8

l p
u9

e9

At this moment, however, u7 overflows, which is treated by the internal-split algorithm. The
next figure gives the MBRs and the final structure of the R-tree after the split.

a

b

c

d

e

f

g

h

i

j

k
l

m

n
o

e2

e1

e3

e4

e5

e6

e7

p

e9

e10

a b c d e f g h i l p m n o

e1 e2

e3

e4 e5

e7

u1 u2
u4

u3

u5 u6

u7

u8

j k
u9

e9 e6
u10

e10

Problem 3. Consider once again the R-tree in Problem 1. Give a range query that returns an
empty result but needs to access 6 nodes of the tree.

Solution. The horizontal line q in the figure below is the search region of one such query.

a

b

c

d

e

f

g

h

i

j k

l

m

n
o

e2

e1

e3

e4

e5

e6

e7

q

2



Problem 4. Give an O(B logB)-time implementation for the leaf split algorithm discussed in the
class, where B is the maximum number of points in a leaf node.

Solution. Let S be the set of m = B+1 points in the (overflowing) leaf node u that the algorithm
operates on. Recall that the algorithm processes each of the dimensions in turn. Next, we will
describe how to process the x-dimension in O(m logm) time. The same algorithm works on the
other dimensions as well.

As discussed in the class, the algorithm first sorts the points of S by x-coordinate—denote the
sorted list by L)—and then, tries all the “possible splits” of L. Specifically, a possible split puts
the first i points of L into a set S1[i], and the other m − i points into another set S2[i], for every
i ∈ [d0.4Be,m − d0.4Be]. Then, it obtains the perimeters of MBR(S1[i]) and MBR(S2[i]). It is
thus clear that, if we can obtain the two MBRs in constant time, then the whole algorithm runs in
O(m logm) time.

To achieve the purpose, we only need to perform two scans of L before trying all the possible
splits. One scan will produce MBR(S1[1]),MBR(S1[2]), ...,MBR(S1[m]) in an array, while the
other scan will produce MBR(S2[1]),MBR(S2[2]), ...,MBR(S2[m]) in another array. We will show
that each scan takes only O(m) time, and hence, does not affect the overall O(m logm) complexity.

Due to symmetry, it suffices to explain how to produce MBR(S1[1]), ...,MBR(S1[m]). First,
MBR(S1[1]) is simply the first point of L (i.e., a degenerated MBR). Inductively, for any i ≥ 2,
MBR(S1[i]) can be obtained from MBR(S1[i− 1]) and the i-th point of L in constant time. This
completes the description of the entire algorithm for Problem 4.

Remark. The above algorithm works for any constant dimensionality d in O(m logm) time.

Problem 5. Give a counterexample showing that the leaf split algorithm discussed in the class
does not give an optimal split. (Hint: set B ≥ 6.)

Solution. Set B = 6. Consider running the split algorithm on the 7 points below. The figure
shows the MBRs of the optimal split, which cannot be discovered by the leaf-split algorithm.

(0,6)

(0,0) (6,0)

(4,10)

(10,10)(4,10)

3


