Applications of the Binary Search Tree

Junhao Gan

ITEE
University of Queensland
Recall

A binary search tree (BST) on a set S of n integers is a binary tree T satisfying all the following requirements:

- T has n nodes.
- Each node u in T stores a distinct integer in S, which is called the key of u.
- For every internal u, it holds that:
 - The key of u is larger than all the keys in the left subtree of u.
 - The key of u is smaller than all the keys in the right subtree of u.
Example

Two possible BSTs on $S = \{3, 11, 12, 15, 18, 29, 40, 41, 47, 68, 71, 92\}$:
Recall

A binary tree T is balanced if the following holds on every internal node u of T:

- The height of the left subtree of u differs from that of the right subtree of u by at most 1.
The BST on the left is balanced, while the one on the right is not.
Let S be a set of integers. A predecessor query for a given integer q is to find its predecessor in S, which is the largest integer in S that does not exceed q.
Example

Suppose that $S = \{3, 11, 12, 15, 18, 29, 40, 41, 47, 68, 71, 92\}$ and we have a balanced BST T on S:

![Binary Search Tree Diagram]

We want to find the predecessor of $q = 42$ in S.
Example

Predecessor query for $q = 42$:

- Initialize $p = -\infty$.
- Initialize $u \leftarrow$ the root of T.
- Now $u.key = 40$ and $p = -\infty$.
- Since $u.key < q$, the predecessor of q must be either u or some node in the right subtree of u.
- Set $p = 40$ and $u \leftarrow$ the right child of u.
Example

Predecessor query for $q = 42$:

- Since $u.key > q$, the predecessor of q must be either p or some node in the left subtree of u.
- Set $u ←$ the left child of u.

```
18 47 71 3 12
11 29 41 92
15 68
40
u.key = 68
p = 40
```
Example

Predecessor query for \(q = 42 \):

- Since \(u.key < q \), the predecessor of \(q \) must be either \(u \) or some node in the right subtree of \(u \).
- Set \(p = 41 \) and \(u \leftarrow \) the right child of \(u \).
Example

Predecessor query for \(q = 42 \):

- Since \(u.key > q \), the predecessor of \(q \) must be either \(p \) or some node in the left subtree of \(u \).
- Set \(u \leftarrow \) the left child of \(u \).
- Since \(u \) is nil now, return \(p = 41 \) as the predecessor of \(q \) in \(S \).
Successor Query

Let S be a set of integers. A successor query for a given integer q is to find its successor in S, which is the smallest integer in S that is no smaller than q.
Example

Successor query for $q = 17$ on S:

- Initialize $p = \infty$.
- Initialize $u \leftarrow$ the root of T.
- Now $u.key = 40$ and $p = \infty$.
- Since $u.key > q$, the successor of q must be either u or some node in the left subtree of u.
- Set $p = 40$ and $u \leftarrow$ the left child of u.
Example

Successor query for $q = 17$ on S:

- Since $u.key < q$, the successor of q must be either p or some node in the right subtree of u.
- Set $u \leftarrow$ the right child of u.
Example

Successor query for $q = 17$ on S:

- Since $u.key > q$, the successor of q must be either u or some node in the left subtree of u.
- Set $p = 29$ and $u \leftarrow$ the left child of u.
Example

Successor query for $q = 17$ on S:

- Since $u.key > q$, the successor of q must be either u or some node in the left subtree of u.
- Set $p = 18$ and $u \leftarrow$ the left child of u.
- Since u is nil now, return $p = 18$ as the successor of q in S.
Construction of a Balanced BST

In the following, we will discuss how to construct a balanced BST T on a given sorted set S of n integers in $O(n)$ time.
Observation 1: The subtree of any node in a balanced BST is also a balanced BST.

Observation 2: A BST of \(n \) nodes constructed by the following form:

\[
\begin{align*}
\text{balanced BST of } & \lfloor \frac{n-1}{2} \rfloor \text{ nodes} \\
\text{balanced BST of } & \lceil \frac{n-1}{2} \rceil \text{ nodes}
\end{align*}
\]

is a balanced BST.
Assume that the sorted set S of n integers is stored in an array with length n. A balanced BST on S can be constructed as follows:

- **Base Case:**
 - If $n = 0$, return nil.
 - If $n = 1$, create a node u with key $A[1]$ and return the pointer of u as the root of a balanced BST on A.

- **Inductive Case:**
 - Pick the median of A (i.e., $A[\lfloor \frac{n}{2} \rfloor]$) and create a node u for it.
 - Recursively construct a balanced BST on the portion of A positioned before the median, and set its root as the left child of u.
 - Recursively construct a balanced BST on the portion of A positioned after the median, and set its root as the right child of u.
 - Return the pointer of u.
Construction of a Balanced BST

Let $f(n)$ be the maximum running time for constructing a balanced BST from an array of length n. Without loss of generality, suppose that n is a power of 2. We have:

\[
\begin{align*}
 f(1) &= O(1) \\
 f(n) &= O(1) + 2 \cdot f(n/2)
\end{align*}
\]

Solving the recurrence gives $f(n) = O(n)$.
Example

Let us construct a balanced BST T on a sorted set $S = \{3, 11, 12, 15, 18, 29, 40, 41, 47, 68, 71, 92\}$ by the above algorithm. Suppose that S is stored in an array A of length 12.
Range Count Problem

Let S be a set of n integers. Given two integers a and b such that $a \leq b$, a range count query for the range $[a, b]$ is to find the number of integers in S which are in the range of $[a, b]$.

In the following, we will discuss how to augment a balanced BST on S to achieve:

- $O(n)$ space consumption,
- $O(\log n)$ time for each query.
Range Count Problem

We augment a balanced BST T on S by storing one additional information in each node u that is:

- the number of nodes in the subtree of u.

For example,

```
  29  cnt = 12
   /    
  12  47  cnt = 6
  /    /    
 3  15 11 18 40 41 68 92
 cnt = 2 cnt = 2 cnt = 1 cnt = 1
```

```
cnt = 5
cnt = 2
cnt = 1
```
Range Count Problem

Before describing the query algorithm, introduce some concepts:

- **Left-Hanging Node**: Consider a path \(P(u, v) \) from an ancestor \(u \) to a node \(v \), if a node \(w \) is a left child node of some node on \(P(u, v) \) and \(w \) is not on \(P(u, v) \), then \(w \) is called a left-hanging node of \(P(u, v) \).

For example, consider a path \(P(47, 68) \), the node with key 40 is a left-hanging node of \(P(47, 68) \), while the node with key 68 is not.
Range Count Problem

- **Right-Hanging Node:** Consider a path $P(u, v)$ from an ancestor u to a node v, if a node w is a right child node of some node on $P(u, v)$ and w is not on $P(u, v)$, then w is called a right-hanging node of $P(u, v)$.

For example, consider a path $P(29, 3)$, the nodes with keys 11, 15, 47 are right-hanging nodes of $P(29, 3)$.
Range Count Problem

- **Lowest Common Ancestor**: Let t be the root. The lowest common ancestor of nodes v_1 and v_2 is the lowest node that is on both of the paths $P(t, v_1)$ and $P(t, v_2)$.

For example, the lowest common ancestor of node with key 3 and node with key 15 is the node with key 12.

![Binary Search Tree Example](attachment:image.png)
Range Count Problem

For a range \([a, b]\) (e.g. \([2, 48]\)), let \(s\) be the successor of \(a\), \(p\) the predecessor of \(b\) and \(u\) the lowest common ancestor of \(s\) and \(p\). Let \(w_1\) and \(w_2\) be the left child and right child of \(u\).

The purple nodes are the right-hanging nodes of \(P(w_1, s)\) and the orange node is the left-hanging nodes of \(P(w_2, p)\). Observe that all the nodes in the subtrees of these left- and right-hand-hanging nodes are in the range \([2, 48]\).
Therefore, the number c of nodes of T in the range $[2, 48]$ can be computed by:

- Initialize $c = 1$.
- Increase c by the number of nodes on $P(w_1, s)$ and $P(w_2, p)$ whose keys are in $[2, 48]$.
- For each right-hanging node v of $P(w_1, s)$, increase c by the counter of v.
- For each left-hanging node v of $P(w_2, p)$, increase c by the counter of v.

For example, $c = 1 + 2 + 1 + 1 + 2 + 2 = 9$.
Range Count Problem

The range count query algorithm for a given range \([a, b]\):

- Find the successor \(s\) of \(a\) and the predecessor \(p\) of \(b\).
- Identify the lowest common ancestor \(u\) of \(s\) and \(p\). Let \(w_1\) and \(w_2\) be the left and right child nodes of \(u\).
- Initialize \(c = 1\).
- Increase \(c\) by the number of nodes on \(P(w_1, s)\) and \(P(w_2, p)\) whose keys are in \([a, b]\).
- Walk along the path \(P(w_1, s)\), for each right-hanging node \(v\), increase \(c\) by the counter of \(v\).
- Walk along the path \(P(w_2, p)\), for each left-hanging node \(v\), increase \(c\) by the counter of \(v\).
- Return \(c\).

The time complexity of the above query algorithm is \(O(\log n)\).
Besides the range count problem, we can also augment a balanced BST on \(S \) to solve the following two interesting problems:

- **Range Sum Problem**: Given two integers \(a \) and \(b \) such that \(a \leq b \), a *range sum query* for the range \([a, b]\) is to find the *sum* of the integers in \(S \) which are in the range of \([a, b]\).

- **Range Max Problem**: Given two integers \(a \) and \(b \) such that \(a \leq b \), a *range max query* for the range \([a, b]\) is to find the *max* of the integers in \(S \) which are in the range of \([a, b]\).

Think: How?