Problem 1. Which of the following is not an atomic operation of the RAM model?
Answer: []
A. Calculate $a + b$ where a and b are stored in two registers.
B. Sort an array of n integers for an arbitrary value of n.

Problem 2. Which of the following is true? Answer: []
A. $n \log_2 n = O(n)$. B. $n = O(n \log n)$.

Problem 3. Which of the following is true? Answer: []
A. $n^2 = \Omega(n)$. B. $n = \Omega(n^2)$.

Problem 4. Which of the following is true? Answer: []
A. $100n + \sqrt{n} + (\log_2 n)^5 = \Theta(n)$. B. $100n + \sqrt{n} + (\log_2 n)^5 \neq \Theta(n)$.

Problem 5. Which of the following functions of n is not $O(n^2)$. Answer: []
A. $n^2 / \log^2 n$ B. $(\log_2 n)^{35}$ C. 100000 D. $\frac{x^{2.001}}{3583}$ E. $\frac{n^3}{2n}$

Problem 6. Which of the following functions of n is $O(n)$. Answer: []
A. 100000 B. $n^2 / \log^2 n$ C. $\frac{n^{2.001}}{3583}$ D. $(1.01)^n$ E. $n \log_2 n$

Problem 7. Which of the following functions of n is $\Omega(n)$. Answer: []
A. 100000 B. $n^2 / \log^2 n$ C. $n^{0.999}$ D. $(1.01)^n$ E. $(\log_2 n)^{35}$

Problem 8. Which of the following functions of n is not $\Theta(n \log n)$. Answer: []
A. $35n \log_2 n + \sqrt{n}$ B. $n \log_35 n$ C. $n^{1.81} + n \log_2 n$ D. $n^{0.99} + 87n \log_{200} n$.

Problem 9. Which of the following statements is true? Answer: []
A. The running time of binary search (performed on a sorted array of n integers) is $O(\log^2 n)$.
B. The running time of binary search (performed on a sorted array of n integers) is $O(1)$.
C. $35n + \sqrt{n} = \Theta(n^2)$.
D. In the RAM model, the time complexity of an algorithm depends on how fast a CPU is (the complexity on a 2 GHz CPU may be different from that on a 1 GHz one).

Problem 10. Prove $10n + n^{1/3} = O(n)$.
COMP7505: Quiz 1

Name:
Student ID:

This is the quiz paper for COMP7505. If you are registered for COMP3506, turn overleaf.

Problems 1-8 bear 10 marks each. Problem 9 bears 20 marks.

Problem 1. Which of the following is true? Answer: []
A. \(n \log_2 n = O(n) \).
B. \(n = O(n \log n) \).

Problem 2. Which of the following is true? Answer: []
A. \(100n + \sqrt{n} + (\log_2 n)^5 = \Theta(n) \).
B. \(100n + \sqrt{n} + (\log_2 n)^5 \neq \Theta(n) \).

Problem 3. Which of the following functions of \(n \) is not \(O(n^2) \). Answer: []
A. \(n^2/\log^2 n \)
B. \((\log_2 n)^{35} \)
C. 100000
D. \(\frac{n^{2.001}}{3383} \)
E. \(\frac{n^3}{2\pi} \)

Problem 4. Which of the following functions of \(n \) is \(O(n) \). Answer: []
A. 100000
B. \(n^2/\log^2 n \)
C. \(\frac{n^{2.001}}{3383} \)
D. \((1.01)^n \)
E. \(n \log_2 n \)

Problem 5. Which of the following functions of \(n \) is \(\Omega(n) \). Answer: []
A. 100000
B. \(n/\log^2 n \)
C. \(n^{0.999} \)
D. \((1.01)^n \)
E. \((\log_2 n)^{35} \)

Problem 6. Which of the following functions of \(n \) is not \(\Theta(n \log n) \). Answer: []
A. \(35n \log_2 n + \sqrt{n} \)
B. \(n \log_3 n \)
C. \(n^{1.81} + n \log_2 n \)
D. \(n^{0.99} + 87n \log_{200} n \)

Problem 7. Which of the following statements is true? Answer: []
A. The running time of binary search (performed on an array of \(n \) integers) is \(O(\log^2 n) \).
B. The running time of binary search (performed on an array of \(n \) integers) is \(O(1) \).
C. \(35n + \sqrt{n} = \Theta(n^2) \).
D. In the RAM model, the time complexity of an algorithm depends on how fast a CPU is (the complexity on a 2 GHz CPU may be different from that on a 1 GHz one).

Problem 8. Prove \(10n + n^{1/3} = O(n) \).

Problem 9. Let \(f(n) \) and \(g(n) \) be two functions of integer \(n \). Prove: if \(f(n) = O(g(n)) \), then \(\frac{f(n)}{g(n)} = O(1) \).