Problem 1. Which of the following is not an atomic operation of the RAM model?
Answer: []
A. Calculate $a + b$ where a and b are stored in two registers.
B. Sort an array of n integers for an arbitrary value of n.

Answer: B

Problem 2. Which of the following is true? Answer: []
A. $n \log_2 n = O(n)$.
B. $n = O(n \log n)$.

Answer: B

Problem 3. Which of the following is true? Answer: []
A. $n^2 = \Omega(n)$.
B. $n = \Omega(n^2)$.

Answer: A

Problem 4. Which of the following is true? Answer: []
A. $100n + \sqrt{n} + (\log_2 n)^5 = \Theta(n)$.
B. $100n + \sqrt{n} + (\log_2 n)^5 \neq \Theta(n)$.

Answer: A

Problem 5. Which of the following functions of n is not $O(n^2)$. Answer: []
A. $n^2 / \log^2 n$
B. $(\log_2 n)^{35}$
C. 100000
D. $n^{2.001} / 3583$
E. $n^3 / 2\pi$

Answer: D

Problem 6. Which of the following functions of n is $O(n)$. Answer: []
A. 100000
B. $n^2 / \log^2 n$
C. $n^{2.001} / 3583$
D. $(1.01)^n$
E. $n \log_2 n$

Answer: A

Problem 7. Which of the following functions of n is $\Omega(n)$. Answer: []
A. 100000
B. $n / \log^2 n$
C. $n^{0.999}$
D. $(1.01)^n$
E. $(\log_2 n)^{35}$

Answer: D

Problem 8. Which of the following functions of n is not $\Theta(n \log n)$. Answer: []
A. $35n \log_2 n + \sqrt{n}$
B. $n \log_{35} n$
C. $n^{1.81} + n \log_2 n$
D. $n^{0.99} + 87n \log_{200} n$.

Answer: C

Problem 9. Which of the following statements is true? Answer: []
A. The running time of binary search (performed on a sorted array of \(n\) integers) is \(O(\log^2 n)\).
B. The running time of binary search (performed on a sorted array of \(n\) integers) is \(O(1)\).
C. \(35n + \sqrt{n} = \Theta(n^2)\).
D. In the RAM model, the time complexity of an algorithm depends on how fast a CPU is (the complexity on a 2 GHz CPU may be different from that on a 1 GHz one).

Answer: A

Problem 10. Prove \(10n + n^{1/3} = O(n)\).

Answer: Set \(c_1 = 11\) and \(c_2 = 1\). The inequality \(10n + n^{1/3} \leq c_1n\) holds for all \(n \geq c_2\). This completes the proof.
COMP7505: Quiz 1

Name:
Student ID:

This is the quiz paper for COMP7505. If you are registered for COMP3506, turn overleaf.

Problems 1-8 bear 10 marks each. Problem 9 bears 20 marks.

Problem 1. Which of the following is true? Answer: []
A. \(n \log_2 n = O(n) \).
B. \(n = O(n \log n) \).

Answer: B

Problem 2. Which of the following is true? Answer: []
A. \(100n + \sqrt{n} + (\log_2 n)^5 = \Theta(n) \).
B. \(100n + \sqrt{n} + (\log_2 n)^5 \neq \Theta(n) \).

Answer: A

Problem 3. Which of the following functions of \(n \) is not \(O(n^2) \). Answer: []
A. \(n^2 / \log^2 n \)
B. \((\log_2 n)^{35} \)
C. 100000
D. \(\frac{\pi^{2.001}}{3583} \)
E. \(n^{\frac{3}{2} \pi} \)

Answer: D

Problem 4. Which of the following functions of \(n \) is \(O(n) \). Answer: []
A. 100000
B. \(n^2 / \log^2 n \)
C. \(\frac{n^{32.001}}{3583} \)
D. \((1.01)^n \)
E. \(n \log_2 n \)

Answer: A

Problem 5. Which of the following functions of \(n \) is \(\Omega(n) \). Answer: []
A. 100000
B. \(n / \log^2 n \)
C. \(n^{0.999} \)
D. \((1.01)^n \)
E. \((\log_2 n)^{35} \)

Answer: D

Problem 6. Which of the following functions of \(n \) is not \(\Theta(n \log n) \). Answer: []
A. \(35n \log_2 n + \sqrt{n} \)
B. \(n \log_{35} n \)
C. \(n^{1.81} + n \log_2 n \)
D. \(n^{0.99} + 87n \log_{200} n \)

Answer: C

Problem 7. Which of the following statements is true? Answer: []
A. The running time of binary search (performed on an array of \(n \) integers) is \(O(\log^2 n) \).
B. The running time of binary search (performed on an array of \(n \) integers) is \(O(1) \).
C. \(35n + \sqrt{n} = \Theta(n^2) \).
D. In the RAM model, the time complexity of an algorithm depends on how fast a CPU is (the complexity on a 2 GHz CPU may be different from that on a 1 GHz one).

Answer: A

Problem 8. Prove \(10n + n^{1/3} = O(n) \).

Answer: Set \(c_1 = 11 \) and \(c_2 = 1 \). The inequality \(10n + n^{1/3} \leq c_1 n \) holds for all \(n \geq c_2 \). This completes the proof.
Problem 9. Let $f(n)$ and $g(n)$ be two functions of integer n. Prove: if $f(n) = O(g(n))$, then $\frac{f(n)}{g(n)} = O(1)$.

Answer: As $f(n) = O(g(n))$, there exist constants c_1, c_2 such that $f(n) \leq c_1 \cdot g(n)$ for all $n \geq c_2$. This means $\frac{f(n)}{g(n)} \leq c_1$ for all $n \geq c_2$, namely, $f(n)/g(n) = O(1)$.
