Merge Sort

Yufei Tao

ITEE
University of Queensland
Recall:

The Sorting Problem

Problem Input:

A set S of n integers is given in an array of length n. The value of n is inside the CPU (i.e., in a register).

Goal:

Design an algorithm to store S in an array where the elements have been arranged in ascending order.
Example

Input:

Output:
In this lecture, we will learn an algorithm called merge sort settling the problem in $O(n \log n)$ time. As we will see, this algorithm is another beautiful application of recursion.

Recall: The idea of recursion is to carry out two steps:

1. **[Base Case]**
 Solve the case where the problem size $n = 1$ and 0 (usually trivial).

2. **[Inductive Case]**
 Solve the problem with a problem size $n > 1$ by reducing n.
Merge Sort

Base Case. If $n = 1$ (i.e., S has a single element), there is nothing to sort. Return directly.

Inductive Case. Otherwise, the algorithm runs in three steps:

1. Recursively sort the first half of the array S (i.e., same problem but with size $n/2$).
2. Recursively sort the second half of the array.
3. Merge the two halves of the array into the final sorted sequence (details later).
Example

Input:

![Diagram of an array with elements 16, ..., and spaces for more elements.]

First step, sort the first half of the array by recursion.

![Diagram of the sorted first half of the array with elements 16, ..., and spaces for more elements.]

sort recursively

First step, sort the first half of the array by recursion.
Example

Second step, sort the second half of the array by recursion:

Third step, merge the two halves.
We are looking at the following (sub-)problem.

There are two arrays—denoted as A_1 and A_2—of integers. Each array has (at most) $n/2$ integers, which have been sorted in ascending order. The goal is to produce an array A with all the integers in A_1 and A_2, sorted in ascending order.

The following shows an example of the input:
Merging

At the beginning, set i and j to 1.

Repeat the following until $i > n/2$ or $j > n/2$:

1. If $A_1[i]$ (i.e., the i-th integer of A_1) is smaller than $A_2[j]$, append $A_1[i]$ to A, and increase i by 1.

2. Otherwise, append $A_2[j]$ to A, and increase j by 1.
Example

At the beginning of merging:

![Diagram showing merging process](image)

Appending 5 to A:

![Diagram showing appending process](image)
Example

Appending 9 to A:

Appending 12 to A:
Example

Appending 17 to \(A \):

And so on.
Running Time of Merge Sort

Let \(f(n) \) denote the worst-case running time of merge sort when executed on an array of size \(n \).

From the basic step, we know:

\[
f(n) = O(1)
\]

From the inductive step, we know:

\[
f(n) \leq 2f(n/2) + O(n)
\]

where the first term on the right hand side is because the recursion sorts two arrays each of size \(n/2 \), and the second term captures the time of merging (convince yourself this is true).
Running Time of Merge Sort

So it remains to solve the following recurrence:

\[
\begin{align*}
 f(n) & \leq c_1 \\
 f(n) & \leq 2f(n/2) + c_2 n
\end{align*}
\]

where \(c_1, c_2 \) are constants (whose values we do not care). Using the expansion method, we have:

\[
\begin{align*}
 f(n) & \leq 2f(n/2) + c_2 n \\
 & \leq 2(2f(n/4) + c_2 n/2) + c_2 n = 4f(n/4) + 2c_2 n \\
 & \leq 4(2f(n/8) + c_2 n/4) + 2c_2 n = 8f(n/8) + 3c_2 n \\
 & \vdots \\
 & \leq 2^i f(n/2^i) + i \cdot c_2 n \\
 & \vdots \\
 (h = \log_2 n) & \leq 2^h f(1) + h \cdot c_2 n \\
 & \leq n \cdot c_1 + c_2 n \cdot \log_2 n = O(n \log n).
\end{align*}
\]
Running Time of Merge Sort

The previous discussion assumed n to be a power of 2. How do we remove the assumption?

Hint: The rounding approach discussed in a previous lecture.
It is worth mentioning that the specific form of recursion we used in merge sort is also called *divide and conquer*. The name is fairly intuitive: we “divided” the input array into two halves, “conquered” them separately (i.e., sorting them), and derived the overall result. This is an important technique in computer science.
Recall that selection sort performs sorting in $O(n^2)$ time. Today, we have significantly improved the running time to $O(n \log n)$. Interestingly, this can no longer be improved asymptotically using the so-called “comparison-based” approach—we will prove later that any comparison-based algorithm must incur $\Omega(n \log n)$ time!