This and the next lecture will be devoted to the most important data structure of this course: the **binary search tree** (BST). This is without a doubt one of the most important data structures in computer science.

In this lecture, we will focus on the **static** version of the BST (namely, without considering insertions and deletions), leaving the **dynamic** version to the next lecture.
We will discuss the BST on a specific problem:

Dynamic Predecessor Search

Let S be a set of integers. We want to store S in a data structure to support the following operations:

- A **predecessor query**: give an integer q, find its predecessor in S, which is the largest integer in S that does not exceed q;
- **Insertion**: adds a new integer to S;
- **Deletion**: removes an integer from S.
Suppose that \(S = \{3, 10, 15, 20, 30, 40, 60, 73, 80\} \).

- The predecessor of 23 is 20
- The predecessor of 15 is 15
- The predecessor of 2 does not exist.

Note that a predecessor query is more general (why?) than a “dictionary lookup”. Recall that, given a value \(q \), a dictionary lookup determines whether \(q \in S \).
We will learn a version of the BST that guarantees:

- $O(n)$ space consumption.
- $O(\log n)$ time per predecessor query (hence, also per dictionary lookup).
- $O(\log n)$ time per insertion
- $O(\log n)$ time per deletion

where $n = |S|$. Note that all the above complexities hold in the worst case.
A BST on a set S of n integers is a binary tree T satisfying all the following requirements:

- T has n nodes.
- Each node u in T stores a distinct integer in S, which is called the key of u.
- For every internal u, it holds that:
 - The key of u is larger than all the keys in the left subtree of u.
 - The key of u is smaller than all the keys in the right subtree of u.
Two possible BSTs on $S = \{3, 10, 15, 20, 30, 40, 60, 73, 80\}$.

![Two possible BSTs on S = {3, 10, 15, 20, 30, 40, 60, 73, 80}.

1. **Example**

2. **Binary Search Tree (Part 1)**
A binary tree T is balanced if the following holds on every internal node u of T:

- The height of the left subtree of u differs from that of the right subtree of u by at most 1.

If u violates the above requirement, we say that u is imbalanced.
Example

Balanced

Not balanced (nodes 40 and 60 are imbalanced)
Height of a Balanced Binary Tree

Theorem: A balanced binary tree with n nodes has height $O(\log n)$.

Proof: Denote the height as h. We will show that a balanced binary tree with height h must have $\Omega(2^{h/2})$ nodes.

Once this is done, it follows that there is a constant $c > 0$ such that:

\[
\begin{align*}
n &\geq c \cdot 2^{h/2} \\
\Rightarrow \quad 2^{h/2} &\leq n/c \\
\Rightarrow \quad h/2 &\leq \log_2(n/c) \\
\Rightarrow \quad h &\leq O(\log n).
\end{align*}
\]
Let $f(h)$ be the minimum number of nodes in a balanced binary tree with height h. It is clear that:

$$f(1) = 1$$
$$f(2) = 2$$
Height of a Balanced Binary Tree

In general, for $h \geq 3$:

$$f(h) = 1 + f(h - 1) + f(h - 2)$$
Height of a Balanced Binary Tree

When h is an even number:

\[
f(h) = 1 + f(h - 1) + f(h - 2) > 2 \cdot f(h - 2) > 2^2 \cdot f(h - 4) > 2^{h/2-1} \cdot f(2) = 2^{h/2}
\]
Height of a Balanced Binary Tree

When \(h \) an odd number (i.e., \(h \geq 3 \)):

\[
\begin{align*}
 f(h) &> f(h - 1) \\
 &> 2^{(h-1)/2} \\
 &= 2^{h/2}/\sqrt{2} \\
 &= \Omega(2^{h/2})
\end{align*}
\]
Predecessor Query

Suppose that we have created a balanced BST T on a set S of n integers. A predecessor query with search value q can be answered by descending a single root-to-leaf path:

1. Set $p \leftarrow -\infty$ (p will contain the final answer at the end)
2. Set $u \leftarrow$ the root of T
3. If $u = \text{nil}$, then return p
4. If key of $u = q$, then set p to q, and return p
5. If key of $u > q$, then set u to the left child (now $u = \text{nil}$ if there is no left child), and repeat from Line 3.
6. Otherwise, set p to the key of u, u to the right child, and repeat from Line 3.
Example

Suppose that we want to find the predecessor of 35.

Start from \(u = \text{root 40} \). Since \(40 > 35 \), the predecessor cannot be in the right subtree of 40. So we move to the left child of 40. Now \(u = \text{node 15} \).
Since $15 < 35$, the predecessor cannot be in the left subtree of 15. Update p to 15, because this is the predecessor of 35 so far, if we do not consider the right subtree of 15. Now, move u to the right child, namely, node 30.
Since 30 < 35, the predecessor cannot be in the left subtree of 30. Update p to 30. We need to move to the right child, but 30 does not have a right child. So the algorithm terminates here with $p = 30$ as the final answer.
Analysis of Predecessor Query Time

Obviously, we spend $O(1)$ time at each node visited. Since the BST is balanced, we know that its height is $O(\log n)$.

Therefore, the total query time is $O(\log n)$.
Successors

The opposite of predecessors are **successors**.

The **successor** of an integer q in S is the smallest integer in S that is no smaller than q.

Suppose that $S = \{3, 10, 15, 20, 30, 40, 60, 73, 80\}$.

- The successor of 23 is 30
- The successor of 15 is 15
- The successor of 81 does not exist.
Finding a Successor

Given an integer q, a **successor query** returns the successor of q in S.

By symmetry, we know from the earlier discussion (on predecessor queries) that a predecessor query can be answered using a balanced BST in $O(\log n)$ time, where $n = |S|$.