Problem 1. Prove that our algorithm for the “stack-with-array problem” takes $O(n)$ time to process any sequence of n operations where each operation can be either a push or a pop.

Solution. Refer to an array expansion or shrinking collectively as an overhaul. If an overhaul happens when the stack has m elements, the overhaul incurs $O(m)$ cost. It suffices to prove that we can always charge the cost on $\Omega(m)$ operations, such that each operation is charged only once.

Suppose that the overhaul is an expansion at m. Consider the moment right after the current array (with length m) was created. As a new array is always half full, we know that the array contained exactly $m/2$ elements at that moment. We charge the $O(m)$ overhaul cost on the (at least) $m/2$ pushes that must have occurred since that moment.

Suppose that the overhaul is a shrinking at m, which means there are only $m/4$ elements left in the array. Consider the moment right after the current array (with length m) was created. As before, the array contained exactly $m/2$ elements at that moment. We charge the $O(m)$ overhaul cost on the (at least) $m/2 - m/4 = m/4$ pops that must have occurred since that moment.

This completes the proof.

Problem 2. Let S be a multi-set of n integers. Define the frequency of an integer x as the number of occurrences of x in S. Design an algorithm to produce an array that sorts the distinct integers in S by frequency. Your algorithm must terminate in $O(n)$ expected time. For example, suppose that $S = \{75, 123, 65, 75, 9, 9, 65, 9, 93\}$. Then you should output $(123, 93, 65, 75, 9)$. Note that if two integers have the same frequency, their relative ordering is unimportant. For example, $(93, 123, 75, 65, 9)$ is another legal output.

Solution. We can collect the set T of distinct integers in S by hashing as follows. For every integer $x \in S$, check whether the hash table has already contained a copy of x. This takes $O(1)$ in expectation. If so, ignore x; otherwise, insert x into the hash table in $O(1)$ time. The collection requires $O(n)$ time overall.

We can then obtain the frequency of every distinct integer as follows. For each integer $x \in S$, find its copy in the hash table, and increase the counter of the copy by 1 (the counter initially set to 0). This takes $O(1)$ time per integer, and hence, $O(n)$ time overall.

Now we simply sort all the distinct integers by frequency. Note that the frequencies are in the domain from 1 to n. Hence, counting sort gets this done in $O(n)$ time.

Problem 3* (Textbook Exercise 17.3-7). Suppose that we want to implement the following two operations on a set S of integers (S is empty at the beginning):

- Insert(e): Add a new integer e into S (you are assured that e is not already in S).
- Delete-Half: Delete the $\lceil |S|/2 \rceil$ smallest elements from S.
Describe a data structure that consumes $O(|S|)$ space, and supports each operation in $O(\log |S|)$ time amortized.

For students in the training camp: improve the operation bound to $O(1)$ amortized!

Solution. Simply store all the elements of S in a linked list. Every insertion takes $O(1)$ time. To perform a delete-half operation, move all the elements in S to an array of length $|S|$, and sort them in $O(|S| \log |S|)$ time. Then, remove the smallest $\lfloor |S|/2 \rfloor$ elements in $O(|S|)$ time. Charge the $O(|S| \log |S|)$ time on the insertions that added those elements. Each insertion bears only $O(\log |S|)$ extra cost. Every insertion can be charged only once.

For the training camp, replace sorting with median selection.

Problem 4. Recall that our algorithm for the “dynamic array problem” (i.e., insertion only) ensures that if the current set S has n elements, the array has a length of at most $2n$. Modify the algorithm to ensure that our array has length at most $1.5n$. You will still need to process an insertion in $O(1)$ amortized time.

Solution. When the current array is full, simply make the length of the new array $\lfloor 1.5n \rfloor$. Charge the $O(n)$ expansion cost on the $\lfloor 0.5n \rfloor$ elements inserted since the previous expansion. The amortized insertion time is therefore still $O(1)$.

Problem 5. Let S be a set of n key-value pairs of the form (k, v), where k is the key and v is the value. Preprocess S into a data structure so that the following queries can be answered efficiently. Given a pair (q_k, q_v), a query

- Returns nothing if S contains no pair with key q_k;
- Otherwise, it returns the number of pairs $(k, v) \in S$ such that $k = q_k$ and $v \leq q_v$.

Define the frequency of a key k as the number of pairs in S with key k. Define f as the maximum frequency of all keys. Your structure must use $O(n)$ space, and answer a query in $O(\log f)$ expected time. Furthermore, it must be possible to construct the structure $O(n \log f)$ time.

For example, suppose that $S = \{(75, 35), (123, 6), (65, 32), (75, 22), (9, 1), (9, 10), (65, 74), (9, 8), (93, 23)\}$. Then, given $(63, 33)$, the query returns nothing. Given $(65, 33)$, the query returns 1. Given $(65, 2)$, the query returns 0. In this example, $f = 3$.

Solution. Collect the set T of distinct keys in S, and obtain their frequencies in $O(n)$ time (see the solution of Problem 2). Create a hash table on T in $O(n)$ time. For every key $k \in T$, create an array A_k whose length is equal to the frequency of k. Store in A_k all the values v such that (k, v) is a pair in S. Sort A_k in ascending order. The sorting takes $O(|A_k| \log |A_k|) = O(|A_k| \log f)$ time. Store the beginning address of A_k at the copy of k in the hash table. The overall construction time is $O(\sum_k |A_k| \log f) = O(n \log f)$. The space consumption is obviously $O(n)$.

To answer a query (q_k, q_v), first probe the hash table to see if $q_k \in T$. If not, terminate the algorithm. Otherwise, perform binary search in A_k in $O(\log f)$ time. The overall query time is $O(1)$ expected plus $O(\log f)$ worst case, which is $O(\log f)$ expected.