Problem 1. Let \(S \) be a set of 9 integers \(\{75, 23, 12, 87, 90, 44, 8, 32, 89\} \), stored in an array of length 9. Let us use quicksort to sort \(S \). Recall that the algorithm randomly picks a pivot element, and then, recursively sorts two sets \(S_1 \) and \(S_2 \), respectively. Suppose that the pivot is 89. What are the contents of \(S_1 \) and \(S_2 \), respectively? The ordering of the elements in \(S_1 \) and \(S_2 \) does not matter.

Solution. \(S_1 = \{75, 23, 12, 87, 44, 8, 32\} \) and \(S_2 = \{90\} \).

Problem 2. Let \(S_1 \) be a set of \(n \) integers, and \(S_2 \) another set of \(n \) integers. Each of \(S_1 \) and \(S_2 \) is stored in an array of length \(n \). The arrays are not necessarily sorted. Design an algorithm to determine whether \(S_1 \cap S_2 \) is empty. Your algorithm must terminate in \(O(n \log n) \) time.

Solution. First, sort \(S_1 \) and \(S_2 \) separately in \(O(n \log n) \) time—suppose they are stored in arrays \(A_1 \) and \(A_2 \), respectively. Then, we determine whether \(S_1 \cap S_2 \) is empty in \(O(n) \) time using the following algorithm. Initially, set \(i \) and \(j \) to 1. Next, repeat the following until either \(i > n \) or \(j > n \):

- If \(A_1[i] = A_2[j] \), return “\(S_1 \cap S_2 \) not empty”;
- If \(A_1[i] < A_2[j] \), then increase \(i \) by 1;
- Otherwise, increase \(j \) by 1.

If the algorithm reaches this point and has not terminated, return “empty”.

Problem 3 (Sorting a Multi-Set). Let \(A \) be an array of \(n \) integers. Note that some of the integers may be identical. Design an algorithm to arrange these integers in non-descending order. For example, if \(A \) stores the sequence of integers \(\{35, 12, 28, 12, 35, 7, 63, 35\} \), you should output an array \(\{7, 12, 12, 28, 35, 35, 35, 63\} \).

Solution. We will apply merge sort as a black box, namely, we do not need to change how the algorithm works at all. Let \(S \) be a set of \(n \) elements defined as follows: the \(i \)-th (\(1 \leq i \leq n \)) element of \(S \) equals \((i, v)\) where \(v = A[i] \). Create an array \(B \) of length \(n \), where \(B[i] \) equals the \(i \)-th element in \(S \). \(B \) can be generated easily from \(A \) in \(O(n) \) time.

We apply merge sort to sort \(B \), but compare two elements \(e_1 = (i_1, v_1) \) and \(e_2 = (i_2, v_2) \) in the following way:

- If \(v_1 < v_2 \), then rule \(e_1 < e_2 \)
- If \(v_1 > v_2 \), then rule \(e_1 > e_2 \)
- If \(v_1 = v_2 \):
 - If \(i_1 < i_2 \), then rule \(e_1 < e_2 \);
After B has been sorted, we can easily generate the output array from B in $O(n)$ time.

Problem 4* (Inversions). Consider a set S of n integers that are stored in an array A (not necessarily sorted). Let e and e' be two integers in S such that e is positioned before e' in A. We call the pair (e, e') an inversion in S if $e > e'$. Design an algorithm to count the number of inversions in S. Your algorithm must terminate in $O(n \log n)$ time.

For example, if the array stores the sequence $(10, 15, 7, 12)$, then your algorithm should return 3, because there are 3 inversions: $(10, 7), (15, 7)$, and $(15, 12)$.

Solution. If $n = 1$, simply return 0. If $n \geq 2$, we divide A into two halves: (i) the first half includes the first $\lceil n/2 \rceil$ elements, and (ii) the second includes the rest. Let A_1 be the array corresponding to the first half, and A_2 be the array corresponding to the second. We count the number c_1 of inversions in A_1 recursively, and then count the number c_2 of inversions in A_2 recursively. We ensure that (i) when the execution returns from A_1, the array A_1 has been sorted, and (ii) the same is true for A_2.

We now count the number c_3 of such inversions (e, e') that $e \in A_1$ and $e' \in A_2$. This can be achieved in $O(n)$ time utilizing the fact that both A_1 and A_2 have been sorted. Initially, set i and j to 1, and c_3 to 0. Next, repeat the following until either $i > |A_1|$ or $j > |A_2|$:

- If $A_1[i] < A_2[j]$, then increase c_3 by $j - 1$, and increase i by 1;
- Otherwise (i.e., $A_1[i] > A_2[j]$), increase j by 1.

If at this moment $j = |A_2| + 1$, increase c_3 by $(|A_1| - i + 1)|A_2|$. The total number of inversions equals $c_1 + c_2 + c_3$.

Before returning to the upper level of recursion, we merge A_1 and A_2 into one sorted list A', and copy the elements of A' into A (which thus becomes sorted). This takes $O(n)$ time.

Let $f(n)$ be the worst-case running time of our algorithm. It holds that $f(1) = O(1)$, and $f(n) = 2 \cdot f(\lceil n/2 \rceil) + O(n)$. By the master theorem, we have $f(n) = O(n \log n)$.

Problem 5* (Maxima). In two-dimensional space, a point (x, y) dominates another point (x', y') if $x > x'$ and $y > y'$. Let S be a set of n points in two-dimensional space, such that no two points share the same x- or y-coordinate. A point $p \in S$ is a maximal point of S if no point in S dominates p. For example, suppose that $S = \{(1, 1), (5, 2), (3, 5)\}$; then S has two maximal points: $(5, 2)$ and $(3, 5)$.

Suppose that S is given in an array of length n, where the i-th $(1 \leq i \leq n)$ element stores the x- and y-coordinates of the i-th point in S (i.e., each element of the array occupies 2 memory cells). For example, $S = \{(1, 1), (5, 2), (3, 5)\}$ is given as the sequence of integers: $(1, 1, 5, 2, 3, 5)$. Design an algorithm to find all the maximal points of S in $O(n \log n)$ time.

Solution. First, sort all the points of S by x-coordinate in $O(n \log n)$ time. Then, process the points in descending order of x-coordinate as follows. Initially, set y_{max} to ∞. For each $i \in [1, n]$, let $p_i = (x_i, y_i)$ be the i-th point in the (descending) sorted order. If $y_i < y_{\text{max}}$, ignore p_i and move on to the next i. Otherwise, report p_i as a maximal point, and set y_{max} to y_i. The processing obviously takes only $O(n)$ time, rendering the overall time complexity $O(n \log n)$.
