Problem 1. Prove $\log_2(n!) = \Theta(n \log n)$.

Solution. Let us prove first $\log_2(n!) = O(n \log n)$:

$$
\log_2(n!) = \log_2(\prod_{i=1}^{n} i) \\
\leq \log_2 n^n \\
= n \log_2 n \\
= O(n \log n).
$$

Now we prove $\log_2(n!) = \Omega(n \log n)$:

$$
\log_2(n!) = \log_2(\prod_{i=1}^{\lceil n/10 \rceil} i) \\
\geq \log_2(\prod_{i=n/2}^{n} i) \\
\geq \log_2(n/2)^{n/2} \\
= \frac{n}{2} \log_2(n/2) \\
= \Omega(n \log n).
$$

This completes the proof.

Problem 2. Let $f(n)$ be a function of positive integer n. We know:

$$
\begin{align*}
f(1) &= 1 \\
f(n) &= 2 + f(\lceil n/10 \rceil).
\end{align*}
$$

Prove $f(n) = O(\log n)$. Recall that $\lceil x \rceil$ is the ceiling operator that returns the smallest integer at least x.

If necessary, you can use without a proof the fact that $f(n)$ is monotone, namely, $f(n_1) \leq f(n_2)$ for any $n_1 < n_2$.

Solution 1 (Expansion). Consider first n being a power of 10.

$$
\begin{align*}
f(n) &\leq 2 + f(n/10) \\
&\leq 2 + 2 + f(n/10^2) \\
&\leq 2 + 2 + 2 + f(n/10^3) \\
&\vdots \\
&\leq 2 \cdot \log_{10} n + f(1) \\
&= 2 \cdot \log_{10} n + 1 = O(\log n).
\end{align*}
$$

Now consider n that is not a power of 10. Let n' be the smallest power of 10 that is greater
than \(n \). We have:

\[
\begin{align*}
f(n) & \leq f(n') \\
& \leq 2 \log_{10} n' + 1 \\
& \leq 2 \log_{10}(10n) + 1 \\
& \leq O(\log n).
\end{align*}
\]

Solution 2 (Master Theorem). Let \(\alpha, \beta, \) and \(\gamma \) be as defined in the Master Theorem (see the tutorial slides of Week 4). Thus, we have \(\alpha = 1, \beta = 10, \) and \(\gamma = 0. \) Since \(\log_{10} \alpha = \log_{10} 1 = 0 = \gamma, \) by the Master Theorem, we know that \(f(n) = O(n^\gamma \log n) = O(\log n). \)

Problem 3. Let \(f(n) \) be a function of positive integer \(n. \) We know:

\[
\begin{align*}
f(1) &= 1 \\
f(n) &= 2 + f(\lceil 3n/10 \rceil).
\end{align*}
\]

Prove \(f(n) = O(\log n). \) Recall that \(\lceil x \rceil \) is the ceiling operator that returns the smallest integer at least \(x. \)

Solution 1 (Expansion).

\[
\begin{align*}
f(n) &= 2 + f(n_1) \quad (\text{define } n_1 = \lceil (3/10)n \rceil) \\
f(n) &= 2 + 2 + f(n_2) \quad (\text{define } n_2 = \lceil (3/10)n_1 \rceil) \\
f(n) &= 2 + 2 + 2 + f(n_3) \quad (\text{define } n_3 = \lceil (3/10)n_2 \rceil) \\
& \quad \vdots \\
f(n) &= \underbrace{2 + 2 + \cdots + 2}_{\text{\(h \) terms}} + f(n_h) \quad (\text{define } n_h = \lceil (3/10)n_{h-1} \rceil) \\
& = 2h + f(n_h). \quad \tag{1}
\end{align*}
\]

So it remains to analyze the value of \(h \) that makes \(n_h \) small enough. Note that we do not need to solve the precise value of \(h; \) it suffices to prove an upper bound for \(h. \) For this purpose, we reason as follows. First, notice that

\[
\lceil 3n/10 \rceil \leq (4n/10) \tag{2}
\]

when \(n \geq 10 \) (prove this yourself).

Let us set \(h \) to be the smallest integer such that \(n_h < 10 \) (this implies that \(n_{h-1} \geq 10 \) and \(n_h \geq (4/10)n_{h-1} \geq 4 \)). We have:

\[
\begin{align*}
n_1 & \leq (4/10)n \\
n_2 &= \lceil (3/10)n_1 \rceil \leq (4/10)n_1 \leq (4/10)^2 n \\
n_3 & \leq (4/10)^3 n \\
& \quad \vdots \\
n_h & \leq (4/10)^h n
\end{align*}
\]

Therefore, the value of \(h \) cannot exceed \(\log_{4/10} n \) (otherwise, \((4/10)^4 \cdot n < 1, \) making \(n_h < 1, \) which contradicts the fact that \(n_h \geq 4 \)). Plugging this into (1) gives:

\[
\begin{align*}
f(n) & \leq 2 \log_{4/10} n + f(10) = O(\log n). \quad \text{(think: why?)}
\end{align*}
\]
Solution 2 (Master Theorem). Let α, β, and γ be as defined in the Master Theorem. Thus, we have $\alpha = 1, \beta = 10/3$, and $\gamma = 0$. Since $\log_\beta \alpha = \log_{10/3} 1 = 0 = \gamma$, by the Master Theorem, we know that $f(n) = O(n^\gamma \log n) = O(\log n)$.

Problem 4. Let $f(n)$ be a function of positive integer n. We know:

\[
\begin{align*}
f(1) &= 1 \\
f(n) &= 2n + 4f(\lceil n/4 \rceil).
\end{align*}
\]

Prove $f(n) = O(n \log n)$. If necessary, you can use without a proof the fact that $f(n)$ is monotone.

Solution 1 (Expansion). Consider first n being a power of 4.

\[
f(n) \leq 2n + 4f(n/4) \\
\leq 2n + 4(2n/4 + 4f(n/4^2)) \\
\leq 2n + 2n + 4^2 f(n/4^2) \\
= 2 \cdot 2n + 4^2 f(n/4^2) \\
\leq 2 \cdot 2n + 4^2 \cdot (2(n/4^2) + 4f(n/4^3)) \\
= 3 \cdot 2n + 4^3 f(n/4^3) \\
\vdots \\
= (\log_4 n) \cdot 2n + n \cdot f(1) \\
= (\log_4 n) \cdot 2n + n = O(n \log n).
\]

Now consider that n is not a power of 4. Let n' be the smallest power of 4 that is greater than n. This implies that $n' < 4n$. We have:

\[
f(n) \leq f(n') \\
\leq (\log_4 n') \cdot 2n' + n' \\
< (\log_4 (4n)) \cdot 8n + 4n = O(n \log n).
\]

Solution 2 (Master Theorem). Let α, β, and γ be as defined in the Master Theorem. Thus, we have $\alpha = 4, \beta = 4$, and $\gamma = 1$. Since $\log_\beta \alpha = \log_4 4 = 1 = \gamma$, by the Master Theorem, we know that $f(n) = O(n^\gamma \log n) = O(n \log n)$.

Problem 5 (Bubble Sort). Let us re-visit the sorting problem. Recall that, in this problem, we are given an array A of n integers, and need to re-arrange them in ascending order. Consider the following bubble sort algorithm:

1. If $n = 1$, nothing to sort; return.

Prove that the algorithm terminates in $O(n^2)$ time.
As an example, support that A contains the sequence of integers $(10, 15, 8, 29, 13)$. After Step 2 has been executed once, array A becomes $(10, 8, 15, 13, 29)$.

Solution 1. Notice that Step 2 is executed $n - 1$ times in total. At its j-th $(1 \leq j \leq n - 1)$ execution, it incurs at most $c \cdot j$ time for some constant $c > 0$. Hence, its worst-case time is no more than

$$c \sum_{j=1}^{n-1} j = cn(n - 1)/2 < cn^2 = O(n^2).$$

Solution 2. Let $f(n)$ be the worst-case running time of bubble sort when the array has n elements. From the base case (Step 1), we know:

$$f(1) \leq c_1$$

for some constant c_1. From the inductive case (Steps 2-3), we know:

$$f(n) \leq c_2n + f(n - 1)$$

for some constant c_2. Solving the recurrence (by the expansion method) gives $f(n) = O(n^2)$.

4