Problem 1. Let \(x \) be a real value. Define \(\lfloor x \rfloor \) to be the largest integer that does not exceed \(x \). For example, \(\lfloor 2.5 \rfloor = 2 \), whereas \(\lfloor 3 \rfloor = 3 \).

Suppose that you are given an integer \(n \geq 2 \) in (a register of) the CPU. Write an algorithm to compute the value of \(\lfloor \log_2 n \rfloor \) in no more than \(100 \log_2 n \) time.

Problem 2. The following figure shows an input to the dictionary search problem.

Describe how binary search works using the input.

Problem 3 (Predecessor Search). Let us first define the notion of predecessor. Let \(S \) be a set of integers. Given an integer \(v \), the predecessor of \(v \) in \(S \) is the largest integer in \(S \) that is at most \(v \). For example, suppose \(S = \{3, 14, 15, 26, 32, 40\} \). The predecessor of 25 is 15, while that of 26 is 26.

Consider the following problem. You are given a set \(S \) of \(n \) integers, which are stored at memory cells 1, 2, ..., \(n \) in ascending order. The value of \(n \) is given in the CPU, and so is an integer \(v \). The following shows an example with \(n = 16 \) and \(v = 35 \).

Describe an algorithm to find the predecessor of \(v \). Your algorithm should have running time at most \(100 + 100 \log_2 n \).

Problem 4 (Prefix Counting). Consider the following problem. You are given a set \(S \) of \(n \) integers, which are stored at memory cells 1, 2, ..., \(n \) in ascending order. The value of \(n \) is given in the CPU, and so is an integer \(v \). The following shows an example with \(n = 16 \) and \(v = 35 \).
Describe an algorithm to find the number of integers in S that are at most v. In the above example, for instance, you should return 5. Your algorithm should have running time at most $100 + 100 \log_2 n$.

Problem 5 (The 3-Sum Problem). Consider the following problem. The input S consists of n integers, which are given at memory cells 1, 2, ..., n, arranged in ascending order. The value of n is given in the CPU. So is a value v. The following shows an example with $n = 16$ and $v = 150$.

```
  16 150 ...
3 14 25 26 32 40 45 52 55 65 68 69 81 86 94 16 150
```

Describe an algorithm to determine whether S has 3 numbers that sum up to v. In the above example, the answer is “yes” because $150 = 40 + 45 + 65$. Your algorithm should have running time at most $100 + 100 \cdot n^2 \log_2 n$.

Problem 6. Still the same problem as above, but improve the running time of your algorithm to at most $100 \cdot n^2$.

2