Perfect Hashing
[Notes for the Training Camp]

Yufei Tao

ITEE
University of Queensland
In this lecture, we will revisit the approach of using a hash table to answer dictionary search queries. Recall that currently we can answer a query in $O(1)$ expected time with a hash table of $O(n)$ space that can be constructed in $O(n)$ time (where n is the size of the underlying set).

We will show that it is possible to improve the query time to $O(1)$ in the worst case without affecting the space cost. The tradeoff is that the construction time becomes $O(n)$ expected.
Recall:

The Dictionary Search Problem

S is a set of n integers in $[U]$ (recall that $[x]$ denotes the set of integers $\{1, 2, \ldots, x\}$). We want to preprocess S into a data structure so that queries of the following form can be answered efficiently:

- Given a value v, a query asks whether $v \in S$.

Recall:

Hash Function

Let U and m be positive integers.

A hash function is a function h that maps $[U]$ to $[m]$, namely, for any integer $k \in [U]$, $h(k)$ returns a value in $[m]$.

COMP3506/7505, Uni of Queensland
Recall:

Universality

Let \mathcal{H} be a family of hash functions. \mathcal{H} is **universal** if the following holds:

Let k_1, k_2 be two distinct integers in $[U]$. By picking a function $h \in \mathcal{H}$ uniformly at random, we guarantee that

$$\Pr[h(k_1) = h(k_2)] \leq 1/m.$$
Recall:

A Universal Family

Pick a prime number p such that $p \geq \max\{U, m\}$. Choose an integer α uniformly at random from $\{1, 2, \ldots, p - 1\}$, and an integer β uniformly at random from $\{0, 1, \ldots, p - 1\}$. Design a hash function as:

$$h(k) = 1 + ((\alpha \cdot k + \beta) \mod p) \mod m$$
Theorem: Let X be a positive real-valued random variable. For any $t > 0$, it holds that

$$\Pr[X \geq t] \leq \frac{E[X]}{t}.$$

Proof: Let $f(x)$ be the probability density function of X.

$$\Pr[X \geq t] = \int_t^\infty f(x)dx = \frac{1}{t} \int_t^\infty t \cdot f(x)dx$$

$$\leq \frac{1}{t} \int_t^\infty x \cdot f(x)dx$$

$$\leq \frac{1}{t} \int_0^\infty x \cdot f(x)dx$$

$$= \frac{E[X]}{t}.$$
In the main class, we said that we should set \(m = \Theta(n) \) in order to achieve constant query time. Now we will challenge this conventional wisdom by choosing \(m = n^2 \).

Lemma 1: By picking \(m = n^2 \), the following holds with probability at least \(1/2 \): every linked list in the hash table has length at most 1.

Proof on the next slide.
Quadratic m—Collision Free Hashing

Proof: We will prove that with probability at least $1/2$, no two integers in S get hashed to the same value. Define X_{ij} to be 1 if the i-th element and j-th element have the same hash value. By universality, we know that $\Pr[X_{ij} = 1] \leq 1/m$. It thus follows that $E[X_{ij}] \leq 1/m$. Define:

$$X = \sum_{i, j \text{ s.t. } i < j} X_{ij}.$$

Note that the summation is on $n(n-1)/2$ pairs of (i, j). Hence, $E[X] \leq n(n-1)/(2m) < 1/2$. By the Markov inequality, we know that

$$\Pr[X \geq 1] \leq 1/2.$$

Since X is an integer, it follows that with probability at least $1/2$, $X = 0$, namely, no two elements in S have the same hash value. \qed
It is clear that we can obtain such a collision free hash table with \(m = n^2 \) by 2 trials in expectation (as each trial succeeds with probability \(1/2 \)).

Doesn’t this already ensure \(O(1) \) query time in the worst case? Yes, but unfortunately, setting \(m = n^2 \) incurs \(\Omega(n^2) \) space! Next, we will bring the space back down to \(O(n) \) using an idea called double hashing.
Double Hashing

Set $m = n$.

Choose a hash function $h : [U] \rightarrow [m]$ randomly from our universal family. Compute the hash value of every integer in S.

Let $S_i (1 \leq i \leq m)$ be $\{k \in S \mid h(k) = i\}$. Define $n_i = |S_i|$.

If $\sum_{i=1}^{m} n_i^2 > 4n$, we declare a global failure, and repeat from scratch by choosing another h randomly.

Otherwise, proceed to the next slide.
Double Hashing

So now we have \(\sum_{i=1}^{m} n_i^2 \leq 4n \).

For every \(i \in [1, m] \), we create a hash table \(T_i \) for \(S_i \) as follows:

1. Set \(m_i = n_i^2 \).
2. Choose a hash function \(h_i : U \rightarrow [m_i] \) randomly from our universal family.
3. Create \(T_i \) based on \(h_i \).
4. If any linked list in \(T_i \) has length at least 2, declare an \(i \)-local failure, and repeat from Step 2.

Note that the final \(T_i \) is collision free, namely, every linked list therein has a length at most 1.

Space consumption is \(O(\sum_{i=1}^{m} n_i^2) = O(n) \).
Given a dictionary search query with search value q, we answer it as follows:

- Compute $i = h(q)$.
- Compute $j = h_i(q)$.
- Scan the linked list of T_i for value j – note that the linked list contains at most 1 element.
- Report “yes” if q is in the linked list, or “no” otherwise.

The query time is clearly $O(1)$.

Query
Next we will prove the most non-trivial fact: the construction time is $O(n)$ in expectation. What is the major obstacle in the proof? Note that global failure sustains until we get $\sum_{i=1}^{m} n_i^2 \leq 4n$. This inequality appears rather difficult to ensure, because we know $\sum_{i=1}^{m} n_i = n$! Nonetheless, as shown in the next, the inequality actually holds with probability at least $1/2$.
Lemma: \(Pr[\sum_{i=1}^{m} n_i^2 > 4n] \leq 1/2. \)

Proof: We will prove that \(E[\sum_{i=1}^{m} n_i^2] \leq 2n, \) after which the lemma will follow from the Markov inequality.

Define \(X_{ij} \) to be 1 if the \(i \)-th element and \(j \)-th element have the same hash value under \(h \). By universality and \(m = n \), we know that \(Pr[X_{ij} = 1] \leq 1/n \). It thus follows that \(E[X_{ij}] \leq 1/n \). Define:

\[
X = \sum_{i, j \text{ s.t. } i < j} X_{ij}.
\]

In other words, \(X \) is the number of distinct pairs of elements that collide in their hash values.

Clearly, \(E[X] \leq (n(n - 1)/2) \cdot (1/n) = (n - 1)/2. \)
Let us now compare \(\sum_{i=1}^{m} n_i^2 \) to \(X \). Recall that \(n_i \) is the size of \(S_i \), i.e., the set of elements that obtain hash value \(i \) under \(h \). Hence, \(S_i \) should contribute \(n_i(n_i - 1)/2 \) to \(X \). It follows that

\[
X \geq \sum_{i=1}^{m} \frac{n_i(n_i - 1)}{2} = \frac{1}{2} \left(\sum_{i=1}^{m} n_i^2 - \sum_{i=1}^{m} n_i \right)
\]

\[
= \frac{1}{2} \sum_{i=1}^{m} n_i^2 - \frac{n}{2}.
\]

Hence:

\[
\sum_{i=1}^{m} n_i^2 \leq 2X + n
\]

indicating that \(E[\sum_{i=1}^{m} n_i^2] \leq 2E[X] + n \leq 2n - 1. \)
Construction Time

Now we can proceed to analyze the expected time of constructing our hash table.

From the previous lemma, we know that we expect to have only 1 global failure before \(\sum_{i=1}^{m} n_i^2 \leq 4n \) holds (i.e., 2 trials, each with success probability at least 1/2). Hence, the decision of \(h \) takes only \(O(n) \) time in expectation.

It remains to analyze the time of creating each \(T_i \). We have already done so – recall that we have 1/2 probability of success by choosing a quadratic \(m_i = n_i^2 \). In other words, we expect only 1 \(i \)-local failure. The time of building \(T_i \) is therefore \(O(n_i) \) expected.

The total cost of building all of \(T_1, T_2, ..., T_n \) is therefore \(O(\sum_{i=1}^{n} n_i) = O(n) \) in expectation.