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P = a set of points in Rd , where the dimensionality d is large.

The goal of dimensionality reduction is to convert P into a set P ′ of
points in a lower-dimensional subspace such that P ′ does not lose “too
much” information about P.

We will learn a classical method called principled component
analysis (PCA) to achieve the purpose.
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Subspace

Fix an integer k ≤ d .

A k-subspace Σ is the span of k unit vectors u1,u2, ...,uk in Rd

that are mutually orthogonal. We refer to {u1, ...,uk} as a basis
of Σ.

Recall that the span of u1, ...,uk is defined as{
Σk

i=1ciui | any real values c1, c2, ..., ck
}
.

The span of two vectors is a plane:

u1

u2
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Subspace

A k-subspace with k ≥ 2 has an infinite number of bases.

u1

u2

u′
1

u′
2

Dimensionality Reduction with PCA



5/25

Projection

Let p be a point (a.k.a., a vector) in Rd .
Consider a k-subspace Σ with a basis {u1, ...,uk}.
For each i ∈ [1, k], the coordinate of p on ui is p · ui .
The projection of p onto Σ is

p̂ = Σk
i=1ciui .

where ci = p · ui . Note: p̂ is a d-dimensional point.

u1

u2

p

p · u2

p̂

p · u1
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Projection

Let p be a point (a.k.a., a vector) in Rd .
Consider a k-subspace Σ with basis {u1, ...,uk}.
Let p̂ be the projection of p onto Σ.

Lemma 1: |p|2 = |p − p̂|2 +
∑k

i=1(p · ui )
2.

Proof: Follows immediately from |p̂|2 =
∑k

i=1(p · ui )
2 and

|p|2 = |p − p̂|2 + |p̂|2.

u1

u2

p

p · u2

p̂

p · u1
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P : a set of n points in Rd whose geometry center is the origin.

Think: If the geometry center of P is not the origin, what
transformations do you need to make this happen?

Goal: Find a k-subspace Σ to minimize its reconstruction error
defined as

1

n

∑
p∈P

|p − p̂|2

where p̂ is the projection of p onto Σ.
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Recall that the geometry center of our point set P is the origin.

Define the covariance of P between dimensions i and j (i , j ≤ d) as

1

n

∑
p∈P

p[i ] · p[j ].

where p[i ] is the coordinate of p on dimension i .

Think: What is the coordinate mean of the points in P on dimen-
sion i?

The covariance matrix A of P is a d × d matrix where A[i , j ]
(i , j ∈ [1, d ]) is the covariance of P between dimensions i and j .

Note that A is symmetric, namely, A = AT .
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Let A be the covariance matrix defined on the previous slide. If

Av = λv

for a d × 1 non-zero vector v and some real value λ, we call

λ an eigenvalue of A, and

v an eigenvector of A.

We also say that v is an eigenvector for λ.

Lemma 2: Matrix A has d eigenvalues λ1, ..., λd . For each i ∈
[1, d ], denote by vi an eigenvector for λi . Then:

λ1, ..., λd are all real values.

For any distinct i , j ∈ [1, d ], the vectors vi and vj are
orthogonal to each other.

The lemma is a well-known result from linear algebra (proof omitted).
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Principle Component Analysis (PCA)

PCA (P, k)
/* The geometry center of P is at the origin */

1. A← the covariance matrix of P
2. compute the eigenvalues of A and sort them in descending

order: λ1 ≥ λ2 ≥ ... ≥ λd

3. compute a unit eigenvector vi for λi for each i ∈ [1, d ]
4. return v1, ..., vk
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The rest of the slides will prove:

Theorem 1: The k-subspace with {v1, ..., vk} as the basis has the
smallest the reconstruction error among all k-subspaces.
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Variance along a Direction

Fix an arbitrary unit vector u. Define the variance of u as

1

n

∑
p∈P

|p · u|2.

Indeed, the above is precisely the variance of the set {p · u | p ∈ P}.

Think: What is the mean of {p · u | p ∈ P}?
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Variance along a Direction

Lemma 3: For any unit vector u, the variance of u equals

uTAu

where A is the covariance matrix of P.

Proof: Define P as the n × d matrix whose row i ∈ [1, n] is pT , where p
is the i-th point of P (note: p is a d × 1 vector and hence pT is a 1× d
vector). Rudimentary calculation shows

variance of u =
1

n
(Pu)T (Pu)

= uT

(
1

n
PTP

)
u

= uTAu

as claimed
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Variance along a Direction

Lemma 4: If λ is an eigenvalue of A and v is a unit eigenvector
for λ, then the variance of v is λ.

Proof:

variance of v = vTAv = vT (Av) = λvTv = λ.
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Total Variance of a Subspace

Consider a k-subspace Σ with a basis {u1, ...,uk}. We define the total
variance of Σ as

k∑
i=1

variance of ui .
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Total Variance vs. Construction Error

Lemma 5: Consider a k-subspace Σ with a basis {u1, ...,uk}. It
holds that

1

n

∑
p∈P

|p|2 = total variance of Σ + construction error of Σ.

Proof: Follows immediately from Lemma 1 and the definitions of total
variance (Slide 15) and construction error (Slide 7).

Implication: We need to maximize total variance to minimize con-
struction error.
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The rest of the slides will prove:

Theorem 2: The k-subspace with {v1, ..., vk} as the basis has the
largest total variance among all k-subspaces.

Theorem 1 is then an immediate corollary of Theorem 2 and Lemma 5.
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Lemma 6: Among all unit vectors, the vector v1 (the unit eigen-
vector for the largest eigenvalue λ1) has the largest variance.

Proof: By Lemma 3, finding a unit vector of the largest variance can be
modeled as the following optimization problem:

find a vector w to maximize wTAw subject to wTw = 1.

We can solve the problem using the method of Lagrange multipliers.
Introduce a real value λ, and define the Lagrangian function:

f (w , λ) = wTAw − λ(wTw − 1)

which yields

∂f

∂w
= 2Aw − 2λw .
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Setting ∂f
∂w = 0 gives a condition that an optimal w must satisfy:

Aw = λw .

In other words, λ is an eigenvalue and w is a unit eigenvector of λ.

Lemma 4 shows that the variance of w is exactly λ. Thus, the variance

of w cannot exceed the maximum eigenvalue λ1 of A. Setting w to v1
achieves this variance. □
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Lemma 7: Among all the unit vectors orthogoal to v1, the vector
v2 (the unit eigenvector for the second largest eigenvalue λ2) has
the largest variance.

Proof: By Lemma 3, the goal is to solve the following optimization
problem:

find a vector w to maximize wTAw subj. to wTw = 1 and wTv1 = 0.

Again, we can solve the problem using the method of Lagrange
multipliers. Introduce real values λ and ϕ, and define the Lagrangian
function:

f (w , λ, ϕ) = wTAw − λ(wTw − 1)− ϕwTv1

which yields

∂f

∂w
= 2Aw − 2λw − ϕv1.
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The optimal w needs to satisfy ∂f
∂w = 0, namely:

2Aw − 2λw − ϕv1 = 0. (1)

Next, we argue that ϕ must be 0. The above equation leads to:

2vT
1 Aw − 2λvT

1 w − ϕvT
1 v1 = 0. (2)

Recall that vT
1 w = 0 and vT

1 v1 = 1. Furthermore:

vT
1 Aw = wTATv1 (transposing a 1× 1 matrix)

= wTAv1 = wT (Av1) = λ1wTv1 = 0.

Hence, from (2), we get ϕ = 0. Thus, (1) now becomes:

2Aw − 2λw = 0

namely, the optimal w must also be an eigenvector.

It thus follows from Lemma 4 that the optimal w must be v2.
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The following theorem generalizes Lemma 7.

Theorem 3: For any t ∈ [2, d ], the vector vt (the unit eigenvector
for the t-th largest eigenvalue λt) has the largest variance among
all the unit vectors orthogonal to v1, ..., vt−1.

The proof is a straightforward extension of the proof of Lemma 7 and is

left to you as an exercise.
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We are now ready to prove Theorem 2 using mathematical induction.

Base case. For k = 1, the theorem’s correctness follows directly from
Lemma 6.

Inductive case. Assuming the the theorem’s correctness on k = t − 1
for some t ∈ [2, d ], we will show that it also holds on k = t.

Let Σ∗ be the t-subspace that has {v1, ..., vt} as a basis.
Let Σ be an arbitrary t-subspace.

Our goal is to show that the total variance of Σ is at most that of Σ∗.
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Lemma 8: We can find a vector w in the t-subspace Σ such that
w is orthogoal to vi for every i ∈ [1, t − 1].

Proof: Let {u1, ...,ut} be an arbitrary basis of Σ. Any vector w in Σ is
in the span of u1, ...,ut . This means

w = Σt
i=1ciui

for some real values c1, c2, ..., ck . As w needs to be orthogonal to each of
v1, ..., vt−1, we have:

w · v1 = 0

w · v2 = 0

...

w · vt−1 = 0

This yields a set of t − 1 linear equations for the t variables c1, ..., ct .

The linear system has infinitely many solutions.
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Lemma 8 implies that Σ has a basis {w1, ...,wt} such that wt is
orthogonal to all of v1, ..., vt−1 (think: why?). We can then assert by
Theorem 3 that

variance of vt ≥ variance of wt .

Let Σ∗
t−1 be the subspace defined by the basis {v1, ..., vt−1}.

Let Σt−1 be the subspace defined by the basis {w1, ...,wt−1}.

By the inductive assumption, we have

total variance of Σ∗
t−1 ≥ total variance of Σt−1.

Therefore

total variance of Σ∗ = total variance of Σ∗
t−1 + variance of vt

≥ total variance of Σt−1 + variance of vt
≥ total variance of Σt−1 + variance of wt

= total variance of Σ.

This completes the proof of Theorem 2.
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