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P = a set of points in R, where the dimensionality d is large.

The goal of dimensionality reduction is to convert P into a set P’ of
points in a lower-dimensional subspace such that P’ does not lose “too
much” information about P.

We will learn a classical method called principled component
analysis (PCA) to achieve the purpose.
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Fix an integer k < d.

A k-subspace ¥ is the span of k unit vectors uy, us, ..., u, in R?
that are mutually orthogonal. We refer to {uy, ..., ux} as a basis
of X.

Recall that the span of uy, ..., uk is defined as

{Zf-;lc,'u; | any real values ci, ¢, ...,ck}.

The span of two vectors is a plane:

R
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A k-subspace with k > 2 has an infinite number of bases.
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Let p be a point (a.k.a., a vector) in RY.

Consider a k-subspace X with a basis {uy, ..., ux}.

For each i € [1, k], the coordinate of p on u; is p - u;.
The projection of p onto ¥ is

k
p = Xicu.

where ¢; = p - u;. Note: p is a d-dimensional point.
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Let p be a point (a.k.a., a vector) in RY.
Consider a k-subspace ¥ with basis {uy, ..., ux}.
Let p be the projection of p onto ¥.

A k
Lemma 1: [p2 = |p — 2 + S, (p - ui)2.

Proof: Follows immediately from |p|2 = Y%  (p - u;)? and
Ip? = |p— pI* + B O
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P : a set of n points in RY whose geometry center is the origin.

Think: If the geometry center of P is not the origin, what
transformations do you need to make this happen?

Goal: Find a k-subspace ¥ to minimize its reconstruction error

defined as
1 ~12
=> lp— 8l
n
peP

where p is the projection of p onto X.
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Recall that the geometry center of our point set P is the origin.

Define the covariance of P between dimensions / and j (/,j < d) as
1 . .
LS il il
pepP

where pl[i] is the coordinate of p on dimension i.

Think: What is the coordinate mean of the points in P on dimen-
sion 7

The covariance matrix A of P is a d X d matrix where A[i, j]
(i,j € [1,d]) is the covariance of P between dimensions i and j.

Note that A is symmetric, namely, A = AT.
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Let A be the covariance matrix defined on the previous slide. If
Av = J\v
for a d x 1 non-zero vector v and some real value \, we call
@ )\ an eigenvalue of A, and

@ v an eigenvector of A.

We also say that v is an eigenvector for \.

Lemma 2: Matrix A has d eigenvalues )\, ..., \y. For each i €
[1, d], denote by v; an eigenvector for A;. Then:

@ A1, ..., Ay are all real values.

@ For any distinct /,j € [1, d], the vectors v; and v; are
orthogonal to each other.

The lemma is a well-known result from linear algebra (proof omitted).
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(Principle Component Analysis (PCA))

PCA (P, k)

/* The geometry center of P is at the origin */

1. A < the covariance matrix of P

2. compute the eigenvalues of A and sort them in descending
order: )\1 > )\2 > .2 )\d

3. compute a unit eigenvector v; for \; for each i € [1, d]

4. return vy, ..., v
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The rest of the slides will prove:

Theorem 1: The k-subspace with {vi, ..., vk} as the basis has the
smallest the reconstruction error among all k-subspaces.
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(Variance along a Direction)

Fix an arbitrary unit vector u. Define the variance of u as

%lew?

peP

Indeed, the above is precisely the variance of the set {p- u | p € P}.

Think: What is the mean of {p-u | p € P}?
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(Variance along a Direction)

Lemma 3: For any unit vector u, the variance of u equals
u'Au

where A is the covariance matrix of P.

Proof: Define P as the n x d matrix whose row i € [1,n] is p”, where p
is the i-th point of P (note: pis a d x 1 vector and hence p” isa 1 x d
vector). Rudimentary calculation shows

1
variance of u = ;(Pu)T(Pu)
T(lpT
= u' |-P'Plu
n
= u'Au

as claimed O
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CVariance along a Direction)

Lemma 4: If \ is an eigenvalue of A and v is a unit eigenvector
for A, then the variance of v is \.

Proof:

variance of v = v Av = v (Av) = \v v = \.
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(Total Variance of a Subspace)

Consider a k-subspace ¥ with a basis {uy, ..., ux}. We define the total
variance of ¥ as

k

E variance of u;.
i=1
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(Total Variance vs. Construction Error)

Lemma 5: Consider a k-subspace X~ with a basis {uy, ..., uc}. It
holds that

1 . .
= Z |p|? = total variance of ¥ + construction error of ¥.
peP

Proof: Follows immediately from Lemma 1 and the definitions of total
variance (Slide 15) and construction error (Slide 7). O

Implication: We need to maximize total variance to minimize con-
struction error.
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The rest of the slides will prove:

Theorem 2: The k-subspace with {v, ..., vc} as the basis has the
largest total variance among all k-subspaces.

Theorem 1 is then an immediate corollary of Theorem 2 and Lemma 5.
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Lemma 6: Among all unit vectors, the vector v; (the unit eigen-
vector for the largest eigenvalue A1) has the largest variance.

Proof: By Lemma 3, finding a unit vector of the largest variance can be
modeled as the following optimization problem:

T

find a vector w to maximize w” Aw subject to w’w = 1.

We can solve the problem using the method of Lagrange multipliers.
Introduce a real value A, and define the Lagrangian function:

flw,)) = w/Aw—-\w'w—1)

which yields

ﬁ = 2Aw —2\w.
ow
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Setting g—:, = 0 gives a condition that an optimal w must satisfy:

Aw = \w.
In other words, A is an eigenvalue and w is a unit eigenvector of A.
Lemma 4 shows that the variance of w is exactly A\. Thus, the variance

of w cannot exceed the maximum eigenvalue \; of A. Setting w to v;
achieves this variance. O
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Lemma 7: Among all the unit vectors orthogoal to vy, the vector
v> (the unit eigenvector for the second largest eigenvalue \;) has
the largest variance.

Proof: By Lemma 3, the goal is to solve the following optimization
problem:

find a vector w to maximize w” Aw subj. to w'w =1 and w’v; = 0.

Again, we can solve the problem using the method of Lagrange
multipliers. Introduce real values \ and ¢, and define the Lagrangian
function:

flw,\,¢) = w Aw - Aw'w—-1)—ow'y
which yields

ﬂ = 2Aw —2\w — ¢v;.
ow
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The optimal w needs to satisfy g—:, =0, namely:
2Aw — 20w — vy = 0. (1)
Next, we argue that ¢ must be 0. The above equation leads to:
2v Aw — 20 w —¢v vy = 0. (2)
Recall that v/’ w = 0 and v{’ v; = 1. Furthermore:

v/ Aw = w'ATv; (transposing a 1 x 1 matrix)
= wl'Av, = WT(Avl) =\w'v =0.

Hence, from (2), we get ¢ = 0. Thus, (1) now becomes:
2Aw —2\w = 0
namely, the optimal w must also be an eigenvector.

It thus follows from Lemma 4 that the optimal w must be vs. O
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The following theorem generalizes Lemma 7.

Theorem 3: For any t € [2, d], the vector v; (the unit eigenvector
for the t-th largest eigenvalue \;) has the largest variance among
all the unit vectors orthogonal to vy, ..., v¢_1.

The proof is a straightforward extension of the proof of Lemma 7 and is
left to you as an exercise.
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We are now ready to prove Theorem 2 using mathematical induction.

Base case. For k = 1, the theorem’s correctness follows directly from
Lemma 6.

Inductive case. Assuming the the theorem'’s correctness on k =t —1
for some t € [2, d], we will show that it also holds on k = t.

Let X" be the t-subspace that has {vy, ..., v;} as a basis.
Let > be an arbitrary t-subspace.

Our goal is to show that the total variance of X is at most that of X*.
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Lemma 8: We can find a vector w in the t-subspace ¥ such that
w is orthogoal to v; for every i € [1,t — 1].

Proof: Let {uy,..., u;} be an arbitrary basis of ¥. Any vector w in ¥ is
in the span of uy, ..., u;. This means

_ t
w=2X, ,cuU

for some real values ¢y, ¢, ..., ck. As w needs to be orthogonal to each of
Vi, ..., Vi_1, We have:

w-vy =

w-vy =

w-vi ;1 = 0

This yields a set of t — 1 linear equations for the t variables c, ..., ¢;.
The linear system has infinitely many solutions. O
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Lemma 8 implies that X has a basis {wx, ..., w; } such that w; is
orthogonal to all of vy, ..., v;_1 (think: why?). We can then assert by
Theorem 3 that

variance of v; > variance of wy.

Let X ; be the subspace defined by the basis {v1,..., vi_1}.
Let ;1 be the subspace defined by the basis {wy, ..., w;_1}.

By the inductive assumption, we have
total variance of X_; > total variance of X;_;.

Therefore

total variance of * total variance of X}_; + variance of v;

total variance of ¥;_1 + variance of v;

(AVARLYS

total variance of ¥;_;1 + variance of w;
total variance of ¥.

This completes the proof of Theorem 2. 2525
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