Dimensionality Reduction with PCA

Yufei Tao

Department of Computer Science and Engineering Chinese University of Hong Kong

Dimensionality Reduction with PCA

1/25

(日)

P = a set of points in \mathbb{R}^d , where the dimensionality d is large.

The goal of **dimensionality reduction** is to convert P into a set P' of points in a lower-dimensional subspace such that P' does not lose "too much" information about P.

We will learn a classical method called **principled component analysis** (PCA) to achieve the purpose.

Fix an integer $k \leq d$.

A *k*-subspace Σ is the span of *k* unit vectors $\boldsymbol{u}_1, \boldsymbol{u}_2, ..., \boldsymbol{u}_k$ in \mathbb{R}^d that are mutually orthogonal. We refer to $\{\boldsymbol{u}_1, ..., \boldsymbol{u}_k\}$ as a basis of Σ .

Recall that the span of $\boldsymbol{u}_1, ..., \boldsymbol{u}_k$ is defined as

$$\Big\{ \sum_{i=1}^k c_i \boldsymbol{u}_i \mid \text{ any real values } c_1, c_2, ..., c_k \Big\}.$$

The span of two vectors is a plane:

Subspace

A k-subspace with $k \ge 2$ has an infinite number of bases.

Dimensionality Reduction with PCA

æ

4/25

イロト イボト イヨト イヨト

Projection

Let p be a point (a.k.a., a vector) in \mathbb{R}^d . Consider a k-subspace Σ with a basis $\{u_1, ..., u_k\}$. For each $i \in [1, k]$, the coordinate of p on u_i is $p \cdot u_i$. The projection of p onto Σ is

$$\hat{\boldsymbol{p}} = \Sigma_{i=1}^k c_i \boldsymbol{u}_i.$$

where $c_i = \boldsymbol{p} \cdot \boldsymbol{u}_i$. Note: $\hat{\boldsymbol{p}}$ is a *d*-dimensional point.

Dimensionality Reduction with PCA

Projection

Let \boldsymbol{p} be a point (a.k.a., a vector) in \mathbb{R}^d . Consider a k-subspace $\boldsymbol{\Sigma}$ with basis $\{\boldsymbol{u}_1, ..., \boldsymbol{u}_k\}$. Let $\hat{\boldsymbol{p}}$ be the projection of \boldsymbol{p} onto $\boldsymbol{\Sigma}$.

Lemma 1:
$$|\boldsymbol{p}|^2 = |\boldsymbol{p} - \hat{\boldsymbol{p}}|^2 + \sum_{i=1}^k (\boldsymbol{p} \cdot \boldsymbol{u}_i)^2$$
.

Proof: Follows immediately from $|\hat{\boldsymbol{p}}|^2 = \sum_{i=1}^{k} (\boldsymbol{p} \cdot \boldsymbol{u}_i)^2$ and $|\boldsymbol{p}|^2 = |\boldsymbol{p} - \hat{\boldsymbol{p}}|^2 + |\hat{\boldsymbol{p}}|^2$.

Dimensionality Reduction with PCA

P : a set of *n* points in \mathbb{R}^d whose geometry center is the origin.

Think: If the geometry center of *P* is not the origin, what transformations do you need to make this happen?

Goal: Find a *k*-subspace Σ to minimize its **reconstruction error** defined as

$$rac{1}{n}\sum_{oldsymbol{p}\in P}|oldsymbol{p}-\hat{oldsymbol{p}}|^2$$

where $\hat{\boldsymbol{p}}$ is the projection of \boldsymbol{p} onto $\boldsymbol{\Sigma}$.

Recall that the geometry center of our point set P is the origin.

Define the **covariance** of *P* between dimensions *i* and *j* $(i, j \le d)$ as

$$\frac{1}{n}\sum_{p\in P}p[i]\cdot p[j].$$

where p[i] is the coordinate of p on dimension i.

Think: What is the coordinate mean of the points in *P* on dimension *i*?

The covariance matrix **A** of *P* is a $d \times d$ matrix where **A**[*i*,*j*] $(i, j \in [1, d])$ is the covariance of *P* between dimensions *i* and *j*.

Note that **A** is symmetric, namely, $\mathbf{A} = \mathbf{A}^{T}$.

8/25

・ロト ・ 一 マ ・ コ ト ・ 日 ト

Let A be the covariance matrix defined on the previous slide. If

$$Av = \lambda v$$

for a $d \times 1$ <u>non-zero</u> vector **v** and some real value λ , we call

- λ an **eigenvalue** of **A**, and
- v an eigenvector of A.

We also say that \mathbf{v} is an **eigenvector for** λ .

Lemma 2: Matrix **A** has *d* eigenvalues $\lambda_1, ..., \lambda_d$. For each $i \in [1, d]$, denote by \mathbf{v}_i an eigenvector for λ_i . Then:

- $\lambda_1, ..., \lambda_d$ are all real values.
- For any distinct *i*, *j* ∈ [1, *d*], the vectors *v_i* and *v_j* are orthogonal to each other.

The lemma is a well-known result from linear algebra (proof omitted).

9/25

ロト (得) (ヨト (ヨト

Principle Component Analysis (PCA)

PCA (P, k)

/* The geometry center of P is at the origin */

- 1. $\mathbf{A} \leftarrow$ the covariance matrix of P
- 2. compute the eigenvalues of **A** and sort them in descending order: $\lambda_1 \ge \lambda_2 \ge ... \ge \lambda_d$
- 3. compute a **unit** eigenvector \mathbf{v}_i for λ_i for each $i \in [1, d]$
- 4. return $v_1, ..., v_k$

10/25

(日本)

The rest of the slides will prove:

Theorem 1: The *k*-subspace with $\{v_1, ..., v_k\}$ as the basis has the smallest the reconstruction error among all *k*-subspaces.

Dimensionality Reduction with PCA

11/25

▲ 同 ▶ → 三 ▶

Variance along a Direction

Fix an arbitrary unit vector \boldsymbol{u} . Define the variance of \boldsymbol{u} as

$$\frac{1}{n}\sum_{\boldsymbol{p}\in P}|\boldsymbol{p}\cdot\boldsymbol{u}|^2.$$

Indeed, the above is precisely the variance of the set $\{ \boldsymbol{p} \cdot \boldsymbol{u} \mid \boldsymbol{p} \in P \}$.

Think: What is the mean of $\{\boldsymbol{p} \cdot \boldsymbol{u} \mid \boldsymbol{p} \in P\}$?

Dimensionality Reduction with PCA

12/25

< ロ > < 同 > < 回 > < 回 >

Variance along a Direction

Lemma 3: For any unit vector **u**, the variance of **u** equals

u[⊤]Au

where \mathbf{A} is the covariance matrix of P.

Proof: Define **P** as the $n \times d$ matrix whose row $i \in [1, n]$ is p^T , where p is the *i*-th point of P (note: p is a $d \times 1$ vector and hence p^T is a $1 \times d$ vector). Rudimentary calculation shows

variance of
$$\boldsymbol{u} = \frac{1}{n} (\mathbf{P}\boldsymbol{u})^T (\mathbf{P}\boldsymbol{u})$$

$$= \boldsymbol{u}^T \left(\frac{1}{n} \mathbf{P}^T \mathbf{P}\right) \boldsymbol{u}$$
$$= \boldsymbol{u}^T \mathbf{A} \boldsymbol{u}$$

as claimed

Variance along a Direction

Lemma 4: If λ is an eigenvalue of **A** and **v** is a unit eigenvector for λ , then the variance of **v** is λ .

Proof:

variance of
$$\mathbf{v} = \mathbf{v}^T \mathbf{A} \mathbf{v} = \mathbf{v}^T (\mathbf{A} \mathbf{v}) = \lambda \mathbf{v}^T \mathbf{v} = \lambda$$
.

Dimensionality Reduction with PCA

э

14/25

- 4 同 6 4 日 6 4 日 6

Total Variance of a Subspace

Consider a *k*-subspace Σ with a basis $\{u_1, ..., u_k\}$. We define the total variance of Σ as

$$\sum_{i=1}^k \text{ variance of } \boldsymbol{u}_i.$$

15/25

(日)

Total Variance vs. Construction Error

Lemma 5: Consider a *k*-subspace Σ with a basis $\{u_1, ..., u_k\}$. It holds that

$$\frac{1}{n}\sum_{\boldsymbol{p}\in P}|\boldsymbol{p}|^2 = \text{total variance of }\Sigma + \text{ construction error of }\Sigma.$$

Proof: Follows immediately from Lemma 1 and the definitions of total variance (Slide 15) and construction error (Slide 7).

Implication: We need to maximize total variance to minimize construction error.

Dimensionality Reduction with PCA

-

16/25

・ 同 ト ・ ヨ ト ・ ヨ ト

The rest of the slides will prove:

Theorem 2: The *k*-subspace with $\{v_1, ..., v_k\}$ as the basis has the largest total variance among all *k*-subspaces.

Theorem 1 is then an immediate corollary of Theorem 2 and Lemma 5.

Dimensionality Reduction with PCA

17/25

Lemma 6: Among all unit vectors, the vector \mathbf{v}_1 (the unit eigenvector for the largest eigenvalue λ_1) has the largest variance.

Proof: By Lemma 3, finding a unit vector of the largest variance can be modeled as the following optimization problem:

find a vector \boldsymbol{w} to maximize $\boldsymbol{w}^T \boldsymbol{A} \boldsymbol{w}$ subject to $\boldsymbol{w}^T \boldsymbol{w} = 1$.

We can solve the problem using the method of Lagrange multipliers. Introduce a real value λ , and define the Lagrangian function:

$$f(\boldsymbol{w}, \lambda) = \boldsymbol{w}^{T} \boldsymbol{A} \boldsymbol{w} - \lambda (\boldsymbol{w}^{T} \boldsymbol{w} - 1)$$

which yields

$$\frac{\partial f}{\partial \boldsymbol{w}} = 2\boldsymbol{A}\boldsymbol{w} - 2\lambda\boldsymbol{w}.$$

Setting $\frac{\partial f}{\partial w} = 0$ gives a condition that an optimal w must satisfy:

$$\mathbf{A}\mathbf{w} = \lambda \mathbf{w}.$$

In other words, λ is an eigenvalue and **w** is a unit eigenvector of λ .

Lemma 4 shows that the variance of \boldsymbol{w} is exactly λ . Thus, the variance of \boldsymbol{w} cannot exceed the maximum eigenvalue λ_1 of \boldsymbol{A} . Setting \boldsymbol{w} to \boldsymbol{v}_1 achieves this variance.

19/25

< ロ > < 同 > < 回 > < 回 >

Lemma 7: Among all the unit vectors orthogoal to v_1 , the vector v_2 (the unit eigenvector for the second largest eigenvalue λ_2) has the largest variance.

Proof: By Lemma 3, the goal is to solve the following optimization problem:

find a vector \boldsymbol{w} to maximize $\boldsymbol{w}^T \boldsymbol{A} \boldsymbol{w}$ subj. to $\boldsymbol{w}^T \boldsymbol{w} = 1$ and $\boldsymbol{w}^T \boldsymbol{v}_1 = 0$.

Again, we can solve the problem using the method of Lagrange multipliers. Introduce real values λ and ϕ , and define the Lagrangian function:

$$f(\boldsymbol{w}, \lambda, \phi) = \boldsymbol{w}^T \mathbf{A} \boldsymbol{w} - \lambda (\boldsymbol{w}^T \boldsymbol{w} - 1) - \phi \boldsymbol{w}^T \boldsymbol{v}_1$$

which yields

$$\frac{\partial f}{\partial \boldsymbol{w}} = 2\boldsymbol{A}\boldsymbol{w} - 2\lambda\boldsymbol{w} - \phi\boldsymbol{v}_1.$$

The optimal **w** needs to satisfy $\frac{\partial f}{\partial w} = 0$, namely:

$$2\mathbf{A}\boldsymbol{w} - 2\lambda\boldsymbol{w} - \phi\boldsymbol{v}_1 = 0. \tag{1}$$

Next, we argue that ϕ must be 0. The above equation leads to:

$$2\boldsymbol{v}_1^T \mathbf{A} \boldsymbol{w} - 2\lambda \boldsymbol{v}_1^T \boldsymbol{w} - \phi \boldsymbol{v}_1^T \boldsymbol{v}_1 = 0.$$
 (2)

Recall that $\mathbf{v}_1^T \mathbf{w} = 0$ and $\mathbf{v}_1^T \mathbf{v}_1 = 1$. Furthermore:

$$\boldsymbol{\nu}_1^T \boldsymbol{A} \boldsymbol{w} = \boldsymbol{w}^T \boldsymbol{A}^T \boldsymbol{\nu}_1 \quad \text{(transposing a } 1 \times 1 \text{ matrix})$$

= $\boldsymbol{w}^T \boldsymbol{A} \boldsymbol{\nu}_1 = \boldsymbol{w}^T (\boldsymbol{A} \boldsymbol{\nu}_1) = \lambda_1 \boldsymbol{w}^T \boldsymbol{\nu}_1 = 0.$

Hence, from (2), we get $\phi = 0$. Thus, (1) now becomes:

$$2\mathbf{A}\boldsymbol{w}-2\lambda\boldsymbol{w} = 0$$

namely, the optimal \boldsymbol{w} must also be an eigenvector.

It thus follows from Lemma 4 that the optimal \boldsymbol{w} must be \boldsymbol{v}_2 .

The following theorem generalizes Lemma 7.

Theorem 3: For any $t \in [2, d]$, the vector \mathbf{v}_t (the unit eigenvector for the *t*-th largest eigenvalue λ_t) has the largest variance among all the unit vectors orthogonal to $\mathbf{v}_1, ..., \mathbf{v}_{t-1}$.

The proof is a straightforward extension of the proof of Lemma 7 and is left to you as an exercise.

We are now ready to prove Theorem 2 using mathematical induction.

Base case. For k = 1, the theorem's correctness follows directly from Lemma 6.

Inductive case. Assuming the theorem's correctness on k = t - 1 for some $t \in [2, d]$, we will show that it also holds on k = t.

Let Σ^* be the *t*-subspace that has $\{v_1, ..., v_t\}$ as a basis. Let Σ be an arbitrary *t*-subspace.

Our goal is to show that the total variance of Σ is at most that of Σ^* .

23/25

イロト イポト イラト イラト

Lemma 8: We can find a vector \boldsymbol{w} in the *t*-subspace $\boldsymbol{\Sigma}$ such that \boldsymbol{w} is orthogoal to \boldsymbol{v}_i for every $i \in [1, t-1]$.

Proof: Let $\{u_1, ..., u_t\}$ be an arbitrary basis of Σ . Any vector w in Σ is in the span of $u_1, ..., u_t$. This means

$$\boldsymbol{w} = \Sigma_{i=1}^t c_i \boldsymbol{u}_i$$

for some real values $c_1, c_2, ..., c_k$. As **w** needs to be orthogonal to each of $v_1, ..., v_{t-1}$, we have:

This yields a set of t - 1 linear equations for the t variables $c_1, ..., c_t$. The linear system has infinitely many solutions.

Lemma 8 implies that Σ has a basis $\{w_1, ..., w_t\}$ such that w_t is orthogonal to all of $v_1, ..., v_{t-1}$ (think: why?). We can then assert by Theorem 3 that

variance of $\boldsymbol{v}_t \geq$ variance of \boldsymbol{w}_t .

Let $\sum_{t=1}^{*}$ be the subspace defined by the basis $\{v_1, ..., v_{t-1}\}$. Let $\sum_{t=1}^{*}$ be the subspace defined by the basis $\{w_1, ..., w_{t-1}\}$.

By the inductive assumption, we have

total variance of $\Sigma_{t-1}^* \ge$ total variance of Σ_{t-1} .

Therefore

total variance of Σ^* = total variance of Σ^*_{t-1} + variance of \boldsymbol{v}_t \geq total variance of Σ_{t-1} + variance of \boldsymbol{v}_t \geq total variance of Σ_{t-1} + variance of \boldsymbol{w}_t = total variance of Σ .

This completes the proof of Theorem 2.

25/25