More Generalization Theorems

Yufei Tao

Department of Computer Science and Engineering Chinese University of Hong Kong

Classification

For today's lecture, let us consider a slightly more general version of the classification problem by allowing a don't-know option for the classifiers.

Let $A_1, ..., A_d$ be d attributes, where $dom(A_i) = \mathbb{R}$ for $i \in [1, d]$.

Instance space $\mathcal{X} = dom(A_1) \times dom(A_2) \times ... \times dom(A_d) = \mathbb{R}^d$. Label space $\mathcal{Y} = \{-1, 1, *\}$, where * means "don't know".

Each instance-label pair (a.k.a. object) is a pair (x, y) in $\mathcal{X} \times \mathcal{Y}$.

• we use $x[A_i]$ to represent the value of x on A_i $(1 \le i \le d)$.

Classification

Denote by \mathcal{D} a probabilistic distribution over $\mathcal{X} \times \mathcal{Y}$.

A classifier is a function

$$h: \mathcal{X} \to \mathcal{Y}$$
.

Denote by \mathcal{H} a collection of classifiers.

The **error of** h **on** \mathcal{D} (i.e., generalization error) is defined as:

$$err_{\mathcal{D}}(h) = \mathbf{Pr}_{(\mathbf{x},y)\sim\mathcal{D}}[h(\mathbf{x})\neq y].$$

We want to learn a classifier $h \in \mathcal{H}$ with small $err_{\mathcal{D}}(h)$ from a **training set** S where each object is drawn independently from \mathcal{D} .

The **error of** h **on** S (i.e., empirical error) is defined as:

$$err_S(h) = \frac{\left| (x,y) \in S \mid h(x) \neq y \right|}{|S|}.$$

Shattering

Let P be a set of points in \mathbb{R}^d . Given a classifier $h \in \mathcal{H}$, we define:

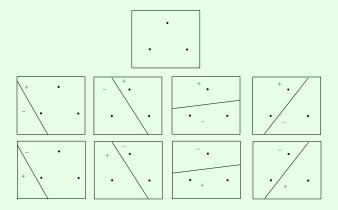
$$P_h = \{ p \in P \mid h(p) = 1 \}$$

namely, the set of points in P that h classifies as 1.

 \mathcal{H} shatters P if, for any subset $P' \subseteq P$, there exists a classifier $h \in \mathcal{H}$ satisfying $P' = P_h$.

Example: An **generic linear classifier** h is described by a d-dimensional weight vector \mathbf{w} and a threshold $\boldsymbol{\tau}$. Given an instance $\mathbf{x} \in \mathbb{R}^d$, $h(\mathbf{x}) = 1$ if $\mathbf{w} \cdot \mathbf{x} \geq \tau$, or -1 otherwise. Let \mathcal{H} be the set of all generic linear classifiers.

In 2D space, \mathcal{H} shatters the set P of points shown below.



Example (cont.): Can you find 4 points in \mathbb{R}^2 that can be shattered by \mathcal{H} ?

The answer is **no**. Can you prove this?

VC Dimension

Let \mathcal{P} be a subset of \mathcal{X} . The **VC-dimension** of \mathcal{H} on \mathcal{P} is the size of the largest subset $\mathcal{P} \subseteq \mathcal{P}$ that can be shattered by \mathcal{H} .

If the VC-dimension is λ , we write VC-dim $(\mathcal{P}, \mathcal{H}) = \lambda$.

VC Dimension of Generic Linear Classifiers

Theorem: Let \mathcal{H} be the set of generic linear classifiers. $VC\text{-}\dim(\mathbb{R}^d,\mathcal{H})=d+1.$

The proof is outside the syllabus.

Example: We have seen earlier that when d=2, \mathcal{H} can shatter at least one set of 3 points but cannot shatter any set of 4 points. Hence, $\operatorname{VC-dim}(\mathbb{R}^2,\mathcal{H})=3$.

Think: Now consider \mathcal{H} as the set of linear classifiers (where the threshold τ is fixed to 0). What can you say about VC-dim($\mathbb{R}^d, \mathcal{H}$)?

VC-Based Generalization Theorem

The **support set** of \mathcal{D} is the set of points in \mathbb{R}^d that have a positive probability to be drawn according to \mathcal{D} .

Theorem: Let \mathcal{P} be the support set of \mathcal{D} and set $\lambda = \mathrm{VC\text{-}dim}(\mathcal{P},\mathcal{H})$. Fix a value δ satisfying $0 < \delta \leq 1$. It holds with probability at least $1 - \delta$ that

$$err_{\mathcal{D}}(h) \leq err_{\mathcal{S}}(h) + \sqrt{\frac{8 \ln \frac{4}{\delta} + 8\lambda \cdot \ln \frac{2e|S|}{\lambda}}{|S|}}.$$

for every $h \in \mathcal{H}$, where S is the set of training points.

The proof is outside the syllabus.

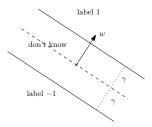
The new generalization theorem places **no constraints** on the size of \mathcal{H} .

Think: What implications can you draw about the Perceptron algorithm?

If a set $\mathcal H$ of classifiers is "more powerful" — namely, having a greater VC dimension — it is more difficult to learn because a larger training set is needed.

For the set $\mathcal H$ of (generic) linear classifiers, the training set size needs to be $\Omega(d)$ to ensure a small generalization error. This becomes a problem when d is large. In fact, later in the course we may even want to work with $d=\infty$.

Next, we will introduce another generalization theorem to address the problem.



A margin classifier is a function $h: \mathcal{X} \to \mathcal{Y}$ where h is defined by a d-dimensional unit vector \mathbf{w} (called the weight vector) and a non-negative real value γ (called the margin) such that

- $h(\mathbf{x}) = 1$ if $\mathbf{x} \cdot \mathbf{w} \ge \gamma$;
- $h(\mathbf{x}) = -1$ if $\mathbf{x} \cdot \mathbf{w} \leq -\gamma$;
- h(x) = * otherwise.

Theorem: Let \mathcal{P} be a set of points whose distances to the origin are bounded by R. Let \mathcal{H}_{γ} be the set of margin classifiers with margin at least γ . Then, VC-dim $(\mathcal{P},\mathcal{H}_{\gamma}) \leq (R/\gamma)^2$.

The proof is outside the syllabus.

For the linear classification problem, the theorem provides strong justification on choosing a linear classifier whose separation plane is as far away from the sample points as possible.

Recall:

Linear classifier: A function $h: \mathcal{X} \to \mathcal{Y}$ where h is defined by a d-dimensional **weight vector** w such that

- h(x) = 1 if $x \cdot w \ge 0$;
- h(x) = -1 otherwise.

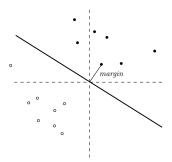
A set $S \subseteq \mathbb{R}^d$ is **linearly separable** if there is a *d*-dimensional vector \mathbf{w} such that for each $\mathbf{p} \in S$:

- $\mathbf{w} \cdot \mathbf{p} > 0$ if \mathbf{p} has label 1;
- $\boldsymbol{w} \cdot \boldsymbol{p} < 0$ if \boldsymbol{p} has label -1.

The linear classifier defined by w is said to separate S.

Let h be a linear classifier defined by a d-dimensional vector \mathbf{w} . Its separation plane, denoted as π , is the plane defined by equation $\mathbf{x} \cdot \mathbf{w} = 0$.

Suppose that h separates a linearly separable set S. Then, the **margin** of h on S is the smallest distance of the points in S to π .



Margin-Based Generalization Theorem

Theorem: Let \mathcal{H} be the set of linear classifiers. Suppose that the training set S is **linearly separable**. Fix a value δ satisfying $0 < \delta \leq 1$. It holds with probability at least $1 - \delta$ that,

$$err_D(h) \leq rac{4R}{\gamma \cdot \sqrt{|S|}} + \sqrt{rac{\ln rac{2}{\delta} + \ln \lceil \log_2(R/\gamma)
ceil}{|S|}}.$$

for every $h \in \mathcal{H}$ on S, where γ is the margin of h on S and

$$R = \max_{\boldsymbol{p} \in S} |\boldsymbol{p}|.$$

The proof is outside the syllabus.

The theorem does not depend on the dimensionality d.