
CMSC5724: Exercise List 9

Answer Problems 1-2 based on the following dataset:

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10

a

b c

d

Problem 1. Recall that, in discussing hierarchical clustering, we introduced 3 distance metrics on
two sets of points: min, max, and mean. Let S1 = {a, c} and S2 = {b, d}. What is the distance
between S1 and S2 under those three metrics, respectively (assuming that the distance of two points
is calculated by Euclidean distance)?

Answer.
Min:

√
2, as is the distance between a and b.

Max:
√
17, as is the distance between a and d.

Mean: (
√
2 +

√
17 + 2 +

√
5)/4, as is the average of dist(a, c), dist(a, d), dist(c, b) and dist(c, d).

Problem 2. Show the dendrogram returned by the Agglomerative algorithm under the min and
max metrics, respectively.

Answer.
Min. At the beginning of the algorithm, each point is regarded as a singleton cluster. In other
words, there are 4 clusters, whose mutual distances are given by:

a b c d

a -
√
2

√
10

√
17

b - - 2
√
13

c - - -
√
5

Since a and b have the smallest distance (among all pairs of clusters), the algorithm merges the two
points into a cluster which we denote as S1. Now, there are 3 clusters left, whose mutual distances
are:

S1 c d

S1 - 2
√
13

c - -
√
5

Hence, the algorithm merges S1 with c into a cluster which we denote as S2. Now that there are
only two clusters left (i.e., S2 and d), the last merge is trivial. The following dendrogram illustrates
the above process.

1

a b c d

Max. Repeating the above algorithm with respect to max results in the following dendrogram:

a b c d

Problem 3. Suppose that we use dmin to define the similarity of two clusters C1, C2. Give an
algorithm to compute the dendrogram on n points in O(n2 log n) time. You can assume that the
dimensionality is a constant.

Answer. Our algorithm maintains a BST T at any moment that stores the distances of all pairs
of the current clusters.

At the beginning, each object forms a cluster by itself. Hence, T contains
(
n
2

)
cluster-pair

distances.
Consider, in general, that the current clusters are C1, C2, ..., Ck. We remove the smallest cluster-

pair distance from T . Suppose that this is the distance between Ci and Cj . Then:

• We merge Ci and Cj into a new cluster Cnew.

• Delete from T the distance between Ci and every other cluster. Do the same for Cj .

• Insert into T the distance between Cnew and every other existing cluster C (i.e., C1, ..., Ck

except Ci, Cj).

To implement the above, the key is to compute d(Cnew, C), namely, the distance between Cnew and
C. We achieve the purpose as follows:

dmin(Cnew, C) = min{dmin(Ci, C), dmin(Cj , C)}

In summary, when there are k ≥ 2 clusters left, the next merge requires:

• Removing the minimum distance from T

• Deleting O(k) distances into T

• Inserting O(k) distances into T .

The total time for the above operations is O(k log k2) = O(k log k) (notice that T stores O(k2)
distances).

Therefore, the total running time of our algorithm is

n∑
k=2

O(k log k) = O(n2 log n).

2

Problem 4. Suppose that we use dmean to define the similarity of two clusters C1, C2. As discussed
in the lecture, dmean(C1, C2) =

1
|C1||C2|

∑
(p1,p2)∈C1×C2

dist(p1, p2). Give an algorithm to compute

the dendrogram on n points in O(n2 log n) time. You can assume that the dimensionality is a
constant.

Answer. The algorithm is precisely the same as the one in Problem 3, but with one change. Recall
that the key to ensure O(n2 log n) time is to compute d(Cnew, C) in constant time from d(Ci, C)
and d(Cj , C) when we merge together Ci and Cj into Cnew. When d = dmean, we can do so as
follows:

dmean(Cnew, C) =
|Ci| · dmean(Ci, C) + |Cj | · dmean(Cj , C)

|Ci|+ |Cj |
.

Problem 5. Consider the set P of points below:

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10

a

b

c

Set ϵ = 1 and minpts = 3. Show the clusters output by DBSCAN, assuming that the distance
metric is Euclidean distance.

Answer. First, identify the core and non-core points, shown below in black and white, respectively.

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10

a b

c d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

Then, the algorithm temporarily ignores the non-core points, and draws an edge between each pair
of core points that are within distance r = 1. This creates a graph:

3

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10

a b

c d

e

f

g

h

i

j

It proceeds by computing the connected components of the graph. In the above graph, there are 3
connected components: C1 = {a, b, c, d, e, f}, C2 = {g}, and C3 = {h, i, j}.

C1, C2 and C3 form a cluster, respectively. In the final step, the algorithm assigns each non-
core point z to each cluster that contains a core point whose neighborhood covers z. Consider, for
example, point m. It is added to P1 because m is in the neighborhood of f . After assigning all the
non-core points, we get {a, b, c, d, e, f, k,m, o}, {g, n, l}, {h, i, j, p, q, r, s} as the final clusters. Note
that point t is regarded as noise.

Problem 6. Given a pair of parameters ϵ and minpts, describe an algorithm to compute the
DBSCAN clusters in O(n2) time, assuming that the distance metric is Euclidean distance, and
that the dimensionality of the data space is a constant.

Answer. First, compute the distance graph. Then, discard all the edges whose weights are more
than ϵ. All these can be done in O(n2) time. Let G be the graph obtained at this moment.

For each vertex, get its degree in G. It is a core point if its degree is at least minpts − 1.
Otherwise, it is a non-core point. Remove the non-core points from G and their edges. Let G′ be
the graph obtained at this moment. All these can be done in O(n2) time.

Now, compute the connected components of G′, which takes O(n2) time. Treat each connected
component as a cluster.

For every non-core point u, look at its neighbors in G. If u has a core-point neighbor v, add u
to the cluster of v. Doing so for all the u takes O(n2) time in total.

4

