CMSC5724: Quiz 3

Name:

Student ID:

Problem 1 (50\%). Run the Apriori algorithm on the following set of transactions to find itemsets with frequencies at least 3 . You only need to give (i) the candidate itemsets at the beginning of each round, and (ii) the frequent itemsets found at each round.

transaction ID	items
1	$\mathrm{~A}, \mathrm{~B}, \mathrm{D}, \mathrm{E}, \mathrm{F}$
2	$\mathrm{~A}, \mathrm{~B}, \mathrm{D}, \mathrm{F}$
3	$\mathrm{~A}, \mathrm{~B}, \mathrm{~F}$
4	$\mathrm{C}, \mathrm{D}, \mathrm{F}$
5	$\mathrm{~B}, \mathrm{C}, \mathrm{E}$
6	$\mathrm{~A}, \mathrm{C}$

Answer: The Apriori algorithm generates:

```
\(C_{1}: \quad\{A\},\{B\},\{C\},\{D\},\{E\},\{F\}\)
\(F_{1} \quad\{A\},\{B\},\{C\},\{D\},\{F\}\)
\(C_{2}: \quad\{A, B\},\{A, C\},\{A, D\},\{A, F\},\{B, C\},\{B, D\},\{B, F\},\{C, D\},\{C, F\},\{D, F\}\)
\(F_{2} \quad\{A, B\},\{A, F\},\{B, F\},\{D, F\}\)
\(C_{2}: \quad\{A, B, F\}\)
\(F_{2} \quad\{A, B, F\}\)
```

Problem 2 (50\%) Consider a set S of three 2D points: $\{(1,4),(1,1),(4,1)\}$. Use PCA to find the line passing the origin on which the projections of the points in S have the largest variance.

Answer: After aligning the geometry center of S to the origin, we obtain the following set of points: $\{(-1,2),(-1,-1),(2,-1)\}$. Its covariance matrix is

$$
A=\left[\begin{array}{cc}
2 & -1 \\
-1 & 2
\end{array}\right]
$$

Solve the characteristic equation of A :

$$
\begin{aligned}
& \left|\begin{array}{cc}
2-\lambda & -1 \\
-1 & 2-\lambda
\end{array}\right|=0 \Rightarrow \\
& (2-\lambda)^{2}-1=0
\end{aligned}
$$

Solving the equation gives the two eigenvalues of $A: \lambda_{1}=3$ and $\lambda_{2}=1$. The line sought in the question is determined by an eigenvector of λ_{1}. In other words, we want to find $\left[\begin{array}{l}x \\ y\end{array}\right]$ satisfying:

$$
\left[\begin{array}{cc}
2 & -1 \tag{1}\\
-1 & 2
\end{array}\right] \cdot\left[\begin{array}{l}
x \\
y
\end{array}\right]=3 \cdot\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

Setting $x=1, y=-1$ satisfies the equation. Therefore, the line is the one passing the origin and the point $(1,-1)$.

