CMSC5724: Quiz 2

Name:

Student ID:

Problem 1 (30%). Given 2D points p = (p[1], p[2]) and q = (q[1], q[2]), define

$$K(p,q) = 3 + 4p[2]q[2] + 2(p[1])^2(q[1])^2 + 16(p[1])^2(q[1])^2(p[2])^2(q[2])^2.$$

Prove: K(p,q) is a kernel function. Specifically, you need to show a mapping function $\phi : \mathbb{R}^2 \to \mathbb{R}^d$ for some integer d such that K(p,q) equals the dot product of $\phi(p)$ and $\phi(q)$.

Answer:

 $\phi(x)=(\sqrt{3},2x[2],\sqrt{2}(x[1])^2,4(x[1]x[2])^2)$

Problem 2 (30%). Consider a training set P including the points below

where the two dots have label 1, the box has label 2, and the cross has label 3. We have a 3-class linear classifier defined by vectors $\boldsymbol{w}_1 = (2,0)$, $\boldsymbol{w}_2 = (-1,1)$, and $\boldsymbol{w}_3 = (0,-1)$ (note that this classifier separates P). Calculate the margin of the classifier.

Answer: Let $W = \{w_1, w_2, w_3\}.$

$$margin(A \mid W) = \min\{\frac{w_2 \cdot A - w_1 \cdot A}{\sqrt{2 \times \sum_{i=1}^3 |w_i|^2}}, \frac{w_2 \cdot A - w_3 \cdot A}{\sqrt{2 \times \sum_{i=1}^3 |w_i|^2}}\} = \min\{\frac{5 - (-6)}{\sqrt{14}}, \frac{5 - (-2)}{\sqrt{14}}\} = \frac{7}{\sqrt{14}}$$

Similarly,

$$margin(B \mid W) = \min\{\frac{2 - (-4)}{\sqrt{14}}, \frac{2 - 0}{\sqrt{14}}\} = \frac{2}{\sqrt{14}}$$
$$margin(C \mid W) = \min\{\frac{6 - (-2)}{\sqrt{14}}, \frac{6 - 1}{\sqrt{14}}\} = \frac{5}{\sqrt{14}}$$

$$margin(D \mid W) = \min\{\frac{4-1}{\sqrt{14}}, \frac{4-(-3)}{\sqrt{14}}\} = \frac{3}{\sqrt{14}}$$

Therefore, the classifier's margin equals $\frac{2}{\sqrt{14}}$.

Problem 3 (40%). Suppose that \mathcal{M} is a set of classifiers in \mathbb{R}^2 . Each classifier $M \in \mathcal{M}$ is defined by $a, b, c \in \mathbb{R}$ such that for every $p \in \mathbb{R}^2$, M(p) equals 1 if $a \cdot p[1] + b \cdot p[2] + c \ge 0$, or -1 otherwise.

- 1. Show the VC-dimension of \mathcal{M} on \mathbb{R}^2 . You do <u>not</u> need to provide a proof.
- 2. Consider \mathcal{M}' as any subset of \mathcal{M} . Prove: the VC-dimension of \mathcal{M}' on \mathbb{R}^2 is no more than the VC-dimension of \mathcal{M} on \mathbb{R}^2 .

Answer:

- 1. 3.
- 2. Proof. Since $\mathcal{M}' \subseteq \mathcal{M}$, if a set of points $P \subseteq \mathbb{R}^2$ is shattered by \mathcal{M}' , P is also shattered by \mathcal{M} , meaning that the VC-dimension of \mathcal{M} on \mathbb{R}^2 is no less than the VC-dimension of \mathcal{M}' on \mathbb{R}^2 .