## CMSC5724: Quiz 2

## Name:

## Student ID:

Problem 1 (30\%). Given 2D points $p=(p[1], p[2])$ and $q=(q[1], q[2])$, define

$$
K(p, q)=3+4 p[2] q[2]+2(p[1])^{2}(q[1])^{2}+16(p[1])^{2}(q[1])^{2}(p[2])^{2}(q[2])^{2}
$$

Prove: $K(p, q)$ is a kernel function. Specifically, you need to show a mapping function $\phi: \mathbb{R}^{2} \rightarrow \mathbb{R}^{d}$ for some integer $d$ such that $K(p, q)$ equals the dot product of $\phi(p)$ and $\phi(q)$.

## Answer:

$$
\phi(x)=\left(\sqrt{3}, 2 x[2], \sqrt{2}(x[1])^{2}, 4(x[1] x[2])^{2}\right)
$$

Problem 2 (30\%). Consider a training set $P$ including the points below

where the two dots have label 1 , the box has label 2 , and the cross has label 3 . We have a 3 -class linear classifier defined by vectors $\boldsymbol{w}_{1}=(2,0), \boldsymbol{w}_{2}=(-1,1)$, and $\boldsymbol{w}_{3}=(0,-1)$ (note that this classifier separates $P$ ). Calculate the margin of the classifier.

Answer: Let $W=\left\{w_{1}, w_{2}, w_{3}\right\}$.

$$
\begin{aligned}
\operatorname{margin}(A \mid W) & =\min \left\{\frac{\boldsymbol{w}_{\mathbf{2}} \cdot \boldsymbol{A}-\boldsymbol{w}_{\mathbf{1}} \cdot \boldsymbol{A}}{\sqrt{2 \times \sum_{i=1}^{3}\left|\boldsymbol{w}_{\boldsymbol{i}}\right|^{2}}}, \frac{\boldsymbol{w}_{\mathbf{2}} \cdot \boldsymbol{A}-\boldsymbol{w}_{\mathbf{3}} \cdot \boldsymbol{A}}{\sqrt{2 \times \sum_{i=1}^{3}\left|\boldsymbol{w}_{\boldsymbol{i}}\right|^{2}}}\right\}=\min \left\{\frac{5-(-6)}{\sqrt{14}}, \frac{5-(-2)}{\sqrt{14}}\right\} \\
& =\frac{7}{\sqrt{14}}
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
& \operatorname{margin}(B \mid W)=\min \left\{\frac{2-(-4)}{\sqrt{14}}, \frac{2-0}{\sqrt{14}}\right\}=\frac{2}{\sqrt{14}} \\
& \operatorname{margin}(C \mid W)=\min \left\{\frac{6-(-2)}{\sqrt{14}}, \frac{6-1}{\sqrt{14}}\right\}=\frac{5}{\sqrt{14}} \\
& \operatorname{margin}(D \mid W)=\min \left\{\frac{4-1}{\sqrt{14}}, \frac{4-(-3)}{\sqrt{14}}\right\}=\frac{3}{\sqrt{14}}
\end{aligned}
$$

Therefore, the classifier's margin equals $\frac{2}{\sqrt{14}}$.
Problem $3 \mathbf{( 4 0 \% )}$. Suppose that $\mathcal{M}$ is a set of classifiers in $\mathbb{R}^{2}$. Each classifier $M \in \mathcal{M}$ is defined by $a, b, c \in \mathbb{R}$ such that for every $p \in \mathbb{R}^{2}, M(p)$ equals 1 if $a \cdot p[1]+b \cdot p[2]+c \geq 0$, or -1 otherwise.

1. Show the VC-dimension of $\mathcal{M}$ on $\mathbb{R}^{2}$. You do not need to provide a proof.
2. Consider $\mathcal{M}^{\prime}$ as any subset of $\mathcal{M}$. Prove: the VC-dimension of $\mathcal{M}^{\prime}$ on $\mathbb{R}^{2}$ is no more than the VC-dimension of $\mathcal{M}$ on $\mathbb{R}^{2}$.

## Answer:

1. 3. 
1. Proof. Since $\mathcal{M}^{\prime} \subseteq \mathcal{M}$, if a set of points $P \subseteq \mathbb{R}^{2}$ is shattered by $\mathcal{M}^{\prime}, P$ is also shattered by $\mathcal{M}$, meaning that the VC-dimension of $\mathcal{M}$ on $\mathbb{R}^{2}$ is no less than the VC-dimension of $\mathcal{M}^{\prime}$ on $\mathbb{R}^{2}$.
