CMSC5724: Quiz 1

Problem 1 (30\%). Consider the training data shown below. Here, A, B, and C are attributes, and Y is the class label.

A	B	C	Y
1	1	1	y
0	1	1	y
0	0	1	y
1	1	0	y
1	0	1	n
1	1	1	n
0	0	0	n
1	0	0	n

Suppose that we consider only decision trees each having 3 nodes - namely, a root node and two leaves - where one leaf has label ' y ' and the other has label ' n '. Give the decision tree with the best empirical error. You need to explain your reasoning.

Answer. For the given input, there are only 6 possible decision trees having 3 nodes, which are:

Among them, the decision tree (b) has the lowest empirical error $1 / 4$ and, hence, is the answer.
Problem 2 (40\%). Use the generalization theorem (in Lecture Notes 1) to estimate the generalization error of your decision tree in Problem 1. Again, we consider only the decision trees with 3 nodes where one leaf has label ' y ' and the other has label ' n '. Your estimate should be correct with probability at least 99%.

Answer. Les S be the training set given in Problem 1 and \mathcal{H} be the set of classifiers that can possibly be returned. Denote by h the best decision tree we found in Problem 1. From the above solution, we know $|\mathcal{H}|=6$ and the empirical error $\operatorname{err}_{S}(h)=1 / 4$.

According to the generalization theorem, with probability at least $1-\delta$, we have

$$
\begin{aligned}
\operatorname{err}_{\mathcal{D}}(h) & \leq \operatorname{err}_{S}(h)+\sqrt{\frac{\ln (1 / \delta)+\ln |\mathcal{H}|}{2|S|}} \\
& \leq 1 / 4+\sqrt{\frac{\ln (1 / \delta)+\ln 6}{16}}
\end{aligned}
$$

By setting $\delta=0.01$, we know with probability at least 0.99 ,

$$
e r r_{\mathcal{D}}(h) \leq 1 / 4+\sqrt{\frac{\ln (1 / 0.01)+\ln 6}{16}} .
$$

Problem 3 (30\%). The following figure shows a set of 5 points. Use the Perceptron algorithm to find a line that (i) crosses the origin and (ii) separates the black points from the white ones. Recall that Perceptron starts with a vector $\boldsymbol{w}=\mathbf{0}$ and iteratively adjusts it using a violation point. You need to show the value of \boldsymbol{w} after every adjustment.

Answer: Without loss of generality, assume that the black points have label 1 while the white ones have label -1. At the beginning, $\boldsymbol{w}=(0,0)$. We use \boldsymbol{A} to denote the vector form of \boldsymbol{A}. Define $\boldsymbol{B}, \boldsymbol{C}, \boldsymbol{D}$ and \boldsymbol{E} similarly.
Iteration 1. Since \boldsymbol{A} does not satisfy $\boldsymbol{w} \cdot \boldsymbol{A}>0$, update \boldsymbol{w} to $\boldsymbol{w}+\boldsymbol{A}=(0,0)+(0,2)=(0,2)$.
Iteration 2. Since \boldsymbol{C} does not satisfy $\boldsymbol{w} \cdot \boldsymbol{A}>0$, update \boldsymbol{w} to $\boldsymbol{w}+\boldsymbol{C}=(0,2)+(2,0)=(2,2)$.
Iteration 3. No more violation points. So we have found a separation line $2 x+2 y=0$.

