Graph Mining: Page Ranks and Random Walks

Yufei Tao
Department of Computer Science and Engineering
Chinese University of Hong Kong

This lecture will discuss

- page ranks for measuring vertex importance in directed graphs, and
- the underlying theory on random walks (a.k.a. Markov chains).

Internet as a Graph

To start our discussion, let us represent WWW as a directed graph $G=(V, E)$:

- Each webpage is a node in V.
- E has an edge $\left(v_{1}, v_{2}\right)$ if page v_{1} has a hyper-link to page v_{2}.
- If a page v has no outgoing links, add a self-loop (v, v) to E.

Random Surfing
(1) $u=$ the page we are visiting (initially, set u to an arbitrary page).
(2) Toss a coin with heads probability α.
(3) If the coin comes up heads, follow a random out-edge (u, v) of u; set u to v.
(4) Otherwise (tails), set u to a random page in G; call this a reset.
(5) Repeat from Step 1.

Page Rank

A page's page rank is the probability of being the t-th page visited when $t=\infty$.

The lecture will answer the FAQs below:

- Would the probability converge for every vertex for $t=\infty$?
- How fast is the convergence?
- Do page ranks depend on the choice of the first page?
- How to compute the page ranks?

Example: Assume that $\alpha=4 / 5$ and the 1 st page chosen is v_{1}.

What is the probability of "2nd page $=v_{3}$ "? The event happens if

- The coin comes up heads and we follow the link $\left(v_{1}, v_{3}\right) \Rightarrow$ probability $=\frac{4}{5} \cdot \frac{1}{2}=\frac{2}{5}$;
- tails and the reset picks $v_{3} \Rightarrow$ probability $=\frac{1}{5} \cdot \frac{1}{5}=\frac{1}{25}$.

Hence, the probability is $\frac{1}{25}+\frac{2}{5}=\frac{11}{25}$.

Example (cont.):

What is the probability of "3rd page $=v_{4}$ " ? This happens if:

- 2nd page $=v_{3}$, the coin comes up heads, and we follow the link $\left(v_{3}, v_{4}\right) \Rightarrow$ probability $=\frac{11}{25} \cdot \frac{4}{5} \cdot \frac{1}{2}=\frac{22}{125}$;
- tails and the reset picks v_{4}; probability $=\frac{1}{25}$.

Hence, the probability is $\frac{22}{125}+\frac{1}{25}=\frac{27}{125}$.

Access Probability

Given a vertex $v \in V$ and an integer $t \geq 1$, define

$$
p(v, t)=\operatorname{Pr}[v \text { is the } t \text {-th page visited }] .
$$

Then:

$$
p(v, t+1)=\frac{1-\alpha}{|V|}+\alpha \cdot \sum_{u \in \operatorname{in}(v)} \frac{p(u, t)}{\operatorname{outdeg}(u)}
$$

where

- in($v)$ is the set of in-neighbors of v;
- outdeg (v) is the out-degree of v.

Access Probability \Rightarrow Page Rank

When $t \rightarrow \infty$,

$$
p(v, t+1)=p(v, t)
$$

definitely holds for all $v \in V$.
The converged value of $p(v, t)$ is the page rank of v.

Before delving into the theory of page ranks, we need to first understand some basic results from the theory of random walks.

An $n \times 1$ vector P is a probability vector if:

- each component in P is a value between 0 and 1 ;
- all components of P sum up to 1 .

An $n \times n$ matrix M is called a stochastic matrix if every column is a probability vector.

Random Walk

Every stochastic matrix \boldsymbol{M} defines a random walk as follows.

- Build a directed graph $G_{\text {markov }}$ with vertices v_{1}, \ldots, v_{n}. For every non-zero entry $\boldsymbol{M}[j, i]$ of \boldsymbol{M}, add an edge $\left(v_{i}, v_{j}\right)$ to $G_{\text {markov }}$.
- Pick an arbitrary vertex as the first stop.
- Inductively, assuming that the t-th stop $(t \geq 1)$ is at v_{i}, move to an out-neighbor v_{j} with probability $\boldsymbol{M}[j, i]$ as the $(t+1)$-th stop.

The above stochastic process is also called a Markov chain.

A random walk is irreducible if the nodes of $G_{\text {markov }}$ are mutually reachable.

A random walk is aperiodic if the following is true: every vertex in $G_{\text {markov }}$ has a non-zero probability of being visited at every $t \geq t_{0}$ for some sufficiently large t_{0}.

Theorem 1: Let \boldsymbol{M} be a stochastic matrix describing an irreducible and aperiodic random walk. Then, all the following are true.

- There is a unique probability vector P satisfying $P=M P$.
- When $t \rightarrow \infty, \operatorname{Pr}\left[v_{i}\right.$ is the t-th node visited $]$ equals $P[i]$ for each $i \in[1, n]$.

The proof is non-trivial and omitted.
P is the stationary probability vector of the random walk.

- P an eigenvector of \boldsymbol{M} corresponding to the eigenvalue 1 .

Random Surfing = Random Walk

The random surfing process is a random walk.
Given v_{i} as the current stop, we jump to v_{j} with probability

- $\frac{1-\alpha}{n}$ if v_{i} has no link to v_{j};
- $\frac{1-\alpha}{n}+\frac{\alpha}{\text { outdeg }\left(v_{i}\right)}$ otherwise.

Think: What is \boldsymbol{M} ? Why is the random walk irreducible and aperiodic?

Recall: $p\left(v_{i}, t\right)=\boldsymbol{\operatorname { P r }}\left[v_{i}\right.$ is the t-th visited $]$, for each $i \in[1, n]$.
Define

$$
P(t)=\left[\begin{array}{c}
p\left(v_{1}, t\right) \\
p\left(v_{2}, t\right) \\
\ldots \\
p\left(v_{n}, t\right)
\end{array}\right]
$$

From Slide 8, we know:

$$
P(t+1)=\boldsymbol{M} \cdot P(t)
$$

When $P(t+1)=P(t), P(t)$ is the solution of P in

$$
P=M P .
$$

Theorem 1 implies that $P(t) \rightarrow P$ when $t \rightarrow \infty$.

Finally, we will analyze how fast $P(t)$ will converge to P. Our analysis will also serve as another proof for the convergence of $P(t)$.

Power Method

Consider the following algorithm for computing $P(t)$ iteratively:

1. $P(1) \leftarrow(1,0, \ldots, 0)^{T}$ and $t \leftarrow 1$
2. for $t=2,3, \ldots$ do
3. $P(t+1)=M P(t)$

Next, we will show that the algorithm converges quickly.

Let $r_{i}=$ the page rank of $v_{i}($ for each $i \in[1, n])$.
Define:

$$
\begin{equation*}
\operatorname{Err}(t)=\sum_{i=1}^{n}\left|p\left(v_{i}, t\right)-r_{i}\right| . \tag{1}
\end{equation*}
$$

We will prove:
Lemma: $\operatorname{Err}(t) \leq \alpha \cdot \operatorname{Err}(t-1)$.

This implies $\operatorname{Err}(t) \leq \alpha^{t} \cdot \operatorname{Err}(0)$.
In turn, this shows that $\operatorname{Err}(t) \leq \epsilon$ after $t=O\left(\log \frac{1}{\epsilon}\right)$ rounds.

By definition of stationary vector, we know that for each $i \in[1, n]$,

$$
r_{i}=\frac{1-\alpha}{n}+\alpha \cdot \sum_{\text {in-neighbor } v_{j} \text { of } v_{i}} \frac{r_{j}}{\operatorname{outdeg}\left(v_{j}\right)}
$$

By how the power method runs, we have:

$$
p\left(v_{i}, t\right)=\frac{1-\alpha}{n}+\alpha \cdot \sum_{\text {in-neighbor } v_{j} \text { of } v_{i}} \frac{p\left(v_{j}, t-1\right)}{\operatorname{outdeg}\left(v_{j}\right)}
$$

The above equations yield

$$
\begin{equation*}
\left|p\left(v_{i}, t\right)-r_{i}\right| \leq \alpha \cdot \sum_{\text {in-neighbor } v_{j} \text { of } v_{i}} \frac{\left|p\left(v_{j}, t-1\right)-r_{j}\right|}{\operatorname{outdeg}\left(v_{j}\right)} \tag{2}
\end{equation*}
$$

Proof
By combining (1) and (2), we have:

$$
\operatorname{Err}(t) \leq \alpha \cdot \sum_{i=0}^{n} \sum_{\text {in-neighbor } v_{j} \text { of } v_{i}} \frac{\left|p\left(v_{j}, t-1\right)-r_{j}\right|}{\text { outdeg }\left(v_{j}\right)}
$$

Observe that $\frac{\left|\rho\left(v_{j}, t-1\right)-r_{j}\right|}{\text { outdeg }\left(v_{j}\right)}$ is added exactly outdeg $\left(v_{j}\right)$ times on the right hand side. Therefore:

$$
\operatorname{Err}(t) \leq \alpha \cdot \sum_{v_{i}}\left|p\left(v_{i}, t-1\right)-r_{i}\right|=\alpha \cdot \operatorname{Err}(t-1)
$$

which completes the proof.

