Dimensionality Reduction with PCA

Yufei Tao
Department of Computer Science and Engineering
Chinese University of Hong Kong

Let P be a set of n points in d-dimensional space, where d is a very large value. Informally, the goal of dimensionality reduction is to convert P into a set P^{\prime} of points in a k-dimensional space where $k<d$, such that P^{\prime} loses as little information about P as possible.

Today, we will learn a popular method of dimensionality reduction called principled component analysis (PCA).

- A vector v is a $d \times 1$ matrix: $\boldsymbol{v}=(v[1], \ldots, v[d])^{T}$.
- A point can be represented as vector.
- A vector v is a unit vector if $\sum_{i=1}^{d} v[i]^{2}=1$.
- Dot product $\boldsymbol{v}_{\mathbf{1}} \cdot \boldsymbol{v}_{\mathbf{2}}=\sum_{i=1}^{d}\left(v_{1}[i] v_{2}[i]\right)$.
- If two vectors $\boldsymbol{v}_{\mathbf{1}}, \boldsymbol{v}_{\mathbf{2}}$ are orthogonal, $\boldsymbol{v}_{\mathbf{1}} \cdot \boldsymbol{v}_{\mathbf{2}}=0$.
- Let p be a point and v a unit vector. Then, $\boldsymbol{p} \cdot \boldsymbol{v}$ gives the distance from the origin to the projection of \boldsymbol{p} on \boldsymbol{v}.

Basics 2

Let S be a set of real numbers r_{1}, \ldots, r_{m}. The mean of S equals:

$$
\operatorname{mean}(S)=\frac{1}{m} \sum_{i=1}^{m} r_{i}
$$

The variance of S equals:

$$
\operatorname{var}(S)=\frac{1}{m} \sum_{i=1}^{m}\left(r_{i}-\operatorname{mean}(S)\right)^{2}
$$

Basics 3

Let P be a set of $n d$-dimensional points p_{1}, \ldots, p_{n}. Its co-variance between dimensions i and j (where $1 \leq i \leq j \leq d$) equals

$$
\frac{1}{n} \sum_{k=1}^{n}\left(p_{k}[i]-\text { mean }_{i}\right)\left(p_{k}[j]-\text { mean }_{j}\right)
$$

where mean $_{i}\left(\right.$ resp., mean $_{j}$) is the mean of the coordinates in P along dimension i (resp., j).

Basics 4

The co-variance matrix A of point set P is a $d \times d$ matrix whose value at the i-th row and j-th column ($i, j \in[1, d]$) is the co-variance of P between dimensions i and j.

Note that A is symmetric, namely, $A=A^{T}$.

Basics 5

Let A be a $d \times d$ matrix. If

$$
A \boldsymbol{v}=\lambda \boldsymbol{v}
$$

for some $d \times 1$ unit vector v and some real value λ, then \boldsymbol{v} is called a unit eigenvector of A and λ is called an eigenvalue of A.

Principle Component Analysis (PCA)

algorithm (P, k)
/* input: P is a set of d-dimensional points and k is an integer in $[1, d]$ */
/* output: a subspace defined by k orthogonal vectors */

1. shift P such that its geometric mean is at the origin of the data space
2. $A \leftarrow$ the co-variance matrix of P
3. compute all the d unit eigenvectors
4. arrange the eigenvectors in descending order of their eigenvalues
5. return the first k eigenvectors $\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{k}$

Note

Each point \boldsymbol{p} is then converted to a k-dimensional point whose i-th ($1 \leq i \leq k$) coordinate is $\boldsymbol{v}_{i} \cdot \boldsymbol{p}$.

Property of PCA

Here is a key property of PCA.
\boldsymbol{v}_{1} is the direction along which the projections of P have the largest variance. In general, $\boldsymbol{v}_{i}(i>1)$ is the direction along which P has the largest variance, among all directions orthogonal to all of $\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{i-1}$.

Next we will prove the above for \boldsymbol{v}_{1} and \boldsymbol{v}_{2}. Then, the cases with $\boldsymbol{v}_{3}, \ldots, \boldsymbol{v}_{i}$ follow the same idea.

Formally, redefine P be a set of $n d$-dimensional points with zero mean on all dimensions. Let \boldsymbol{w} be a unit vector. We can project P onto \boldsymbol{w} to obtain a set of 1 d values: $S=\{\boldsymbol{p} \cdot \boldsymbol{w} \mid p \in P\}$. Define the quality of \boldsymbol{w} be $\operatorname{var}(S)$.

Theorem 1

The first eigenvector output by PCA has the highest quality.

Proof of Theorem 1

Let X be the $n \times d$ matrix where each row lists the coordinates of a point in P. Thus, we can view S as a vector $\boldsymbol{X} \boldsymbol{w}$. Thus:

$$
\begin{aligned}
\operatorname{var}(S) & =\frac{1}{n}(\boldsymbol{X} \boldsymbol{w})^{T}(\boldsymbol{X} \boldsymbol{w}) \\
& =\boldsymbol{w}^{T} \frac{\boldsymbol{X}^{T} \boldsymbol{X}}{n} \boldsymbol{w} \\
& =\boldsymbol{w}^{T} A \boldsymbol{w}
\end{aligned}
$$

where \boldsymbol{A} is the covariance matrix of P. Hence, we want to maximize the above subject to the constraint that $\boldsymbol{w}^{\top} \boldsymbol{w}=1$.

Proof of Theorem 1 (Cont.)

Now we apply the method of Lagrange multipliers to find the maximum. Introduce a real value λ, and now consider the objective function

$$
\begin{aligned}
f(\boldsymbol{w}, \lambda) & =\boldsymbol{w}^{\top} \boldsymbol{A} \boldsymbol{w}-\lambda\left(\boldsymbol{w}^{\top} \boldsymbol{w}-1\right) \Rightarrow \\
\frac{\partial f}{\partial \boldsymbol{w}} & =2 \boldsymbol{A} \boldsymbol{w}-2 \lambda \boldsymbol{w}
\end{aligned}
$$

Equating the above 0 gives $\boldsymbol{A w}=\lambda \boldsymbol{w}$. In other words, \boldsymbol{w} needs to be an eigenvector, and λ the corresponding eigenvalue.

Proof of Theorem 1 (Cont.)

Now it remains to check which eigenvector gives the largest variance. Observe that:

$$
\begin{aligned}
\operatorname{var}(S) & =\boldsymbol{w}^{T} \boldsymbol{A} \boldsymbol{w} \\
& =\boldsymbol{w}^{T} \lambda \boldsymbol{w} \\
& =\lambda
\end{aligned}
$$

In other words, when we choose eigenvector w as our solution, its quality is exactly the eigenvalue λ. Hence, the eigenvector with the maximum eigenvalue is what we are looking for.

Theorem 2

The second eigenvector output by PCA has the highest quality, among all the vectors \boldsymbol{w} orthogonal to the first eigenvector $\boldsymbol{v}_{\mathbf{1}}$.

Proof of Theorem 2

Let \boldsymbol{A} be the covariance matrix of P. As shown in the proof of Theorem 1, we proved that

$$
\operatorname{var}(S)=\boldsymbol{w}^{\top} \boldsymbol{A} \boldsymbol{w}
$$

Hence, we want to maximize the above subject to the constraints $\boldsymbol{w}^{\top} \boldsymbol{w}=1$ and $\boldsymbol{w}^{\top} \boldsymbol{v}_{\mathbf{1}}=0$.

Now we apply the method of Lagrange multipliers to find the maximum. Introduce real values λ and ϕ, and now consider the objective function

$$
\begin{aligned}
f(\boldsymbol{w}, \lambda, \phi) & =\boldsymbol{w}^{\top} \boldsymbol{A} \boldsymbol{w}-\lambda\left(\boldsymbol{w}^{\top} \boldsymbol{w}-1\right)-\phi \boldsymbol{w}^{\top} \boldsymbol{v}_{\mathbf{1}} \Rightarrow \\
\frac{\partial f}{\partial \boldsymbol{w}} & =2 \boldsymbol{A} \boldsymbol{w}-2 \lambda \boldsymbol{w}-\phi \mathbf{v}_{\mathbf{1}} .
\end{aligned}
$$

Proof of Theorem 2 (Cont.)

The optimal \boldsymbol{w} needs to satisfy $\frac{\partial f}{\partial \boldsymbol{w}}=0$, namely:

$$
\begin{equation*}
2 \boldsymbol{A} \boldsymbol{w}-2 \lambda \boldsymbol{w}-\phi \mathbf{v}_{\mathbf{1}}=0 \tag{1}
\end{equation*}
$$

Next we prove that ϕ must be 0 . To see this, multiplying both sides of (1) by $\mathbf{v}_{\mathbf{1}}{ }^{\top}$, we get:

$$
\begin{equation*}
2 \mathbf{v}_{\mathbf{1}}^{\top} \boldsymbol{A} \boldsymbol{w}-2 \lambda \mathbf{v}_{\mathbf{1}}{ }^{\top} \boldsymbol{w}+\phi \mathbf{v}_{\mathbf{1}}{ }^{\top} \mathbf{v}_{\mathbf{1}}=0 \tag{2}
\end{equation*}
$$

We know that $\boldsymbol{v}_{\mathbf{1}}{ }^{\top} \boldsymbol{w}=0$, and $\boldsymbol{v}_{\mathbf{1}}{ }^{\top} \boldsymbol{v}_{\mathbf{1}}=1$. Furthermore,

$$
\mathbf{v}_{\mathbf{1}}{ }^{T} A \boldsymbol{w}=w^{T} A^{T} \mathbf{v}_{\mathbf{1}}=w^{T} A \mathbf{v}_{\mathbf{1}}=w^{T}\left(A \mathbf{v}_{\mathbf{1}}\right)=\boldsymbol{w}^{T} \mathbf{v}_{\mathbf{1}}=0 .
$$

Hence, from (2), we get $\phi=0$.

Proof of Theorem 2 (Cont.)

Therefore, from (1), we know:

$$
2 A w-2 \lambda w=0
$$

namely, \boldsymbol{w} must also be an eigenvector.

From the proof of Theorem 1, we know that $\operatorname{var}(S)$ equals the eigenvalue corresponding to \boldsymbol{w}. This thus indicates that \boldsymbol{w} is the eigenvector of A with the second largest eigenvalue.

