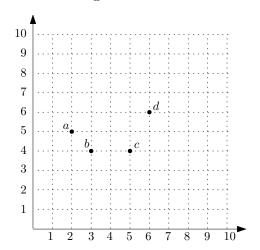
CMSC5724: Exercise List 9

Answer Problems 1-2 based on the following dataset:



Problem 1. Recall that, in discussing hierarchical clustering, we introduced 3 distance metrics on two sets of points: min, max, and mean. Let $S_1 = \{a, c\}$ and $S_2 = \{b, d\}$. What is the distance between S_1 and S_2 under those three metrics, respectively (assuming that the distance of two points is calculated by Euclidean distance)?

Answer.

Min: $\sqrt{2}$, as is the distance between a and b.

Max: $\sqrt{17}$, as is the distance between a and d.

Mean: $(\sqrt{2} + \sqrt{17} + 2 + \sqrt{5})/4$, as is the average of dist(a, c), dist(a, d), dist(c, b) and dist(c, d).

Problem 2. Show the dendrogram returned by the Agglomerative algorithm under the min and max metrics, respectively.

Answer.

Min. At the beginning of the algorithm, each point is regarded as a singleton cluster. In other words, there are 4 clusters, whose mutual distances are given by:

	a	b	c	d
a	-	$\sqrt{2}$	$\sqrt{10}$	$\sqrt{17}$
b	-	-	2	$\sqrt{13}$
c	-	-	-	$\sqrt{5}$

Since a and b have the smallest distance (among all pairs of clusters), the algorithm merges the two points into a cluster which we denote as S_1 . Now, there are 3 clusters left, whose mutual distances are:

Hence, the algorithm merges S_1 with c into a cluster which we denote as S_2 . Now that there are only two clusters left (i.e., S_2 and d), the last merge is trivial. The following dendrogram illustrates the above process.

1

Max. Repeating the above algorithm with respect to max results in the following dendrogram:

Problem 3. Suppose that we use d_{min} to define the similarity of two clusters C_1, C_2 . Give an algorithm to compute the dendrogram on n points in $O(n^2 \log n)$ time.

Answer. Our algorithm maintains a BST T at any moment that stores the distances of all pairs of the current clusters.

At the beginning, each object forms a cluster by itself. Hence, T contains $\binom{n}{2}$ cluster-pair distances.

Consider, in general, that the current clusters are $C_1, C_2, ..., C_k$. We remove the smallest cluster-pair distance from T. Suppose that this is the distance between C_i and C_j . Then:

- We merge C_i and C_j into a new cluster C_{new} .
- Delete from T the distance between C_i and every other cluster. Do the same for C_i .
- Insert into T the distance between C_{new} and every other existing cluster C (i.e., $C_1, ..., C_k$ except C_i, C_j).

To implement the above, the key is to compute $d(C_{new}, C)$, namely, the distance between C_{new} and C. We achieve the purpose as follows:

$$d_{min}(C_{new}, C) = \min\{d_{min}(C_i, C), d_{min}(C_j, C)\}$$

In summary, when there are $k \geq 2$ clusters left, the next merge requires:

- Removing the minimum distance from T
- Deleting O(k) distances into T
- Inserting O(k) distances into T.

The total time for the above operations is $O(k \log k^2) = O(k \log k)$ (notice that T stores $O(k^2)$ distances).

Therefore, the total running time of our algorithm is

$$\sum_{k=2}^{n} O(k \log k) = O(n^2 \log n).$$

Problem 4. Suppose that we use d_{mean} to define the similarity of two clusters C_1, C_2 . As discussed in the lecture, $d_{mean}(C_1, C_2) = \frac{1}{|C_1||C_2|} \sum_{(p_1, p_2) \in C_1 \times C_2} dist(p_1, p_2)$. Give an algorithm to compute the dendrogram on n points in $O(n^2 \log n)$ time.

Answer. The algorithm is precisely the same as the one in Problem 3, but with one change. Recall that the key to ensure $O(n^2 \log n)$ time is to compute $d(C_{new}, C)$ in constant time from $d(C_i, C)$ and $d(C_j, C)$ when we merge together C_i and C_j into C_{new} . When $d = d_{mean}$, we can do so as follows:

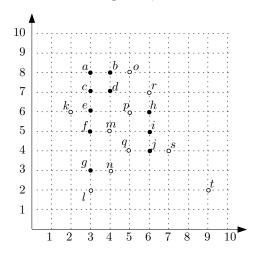
$$d_{mean}(C_{new}, C) = \frac{|C_i| \cdot d_{mean}(C_i, C) + |C_j| \cdot d_{mean}(C_j, C)}{|C_i| + |C_j|}.$$

Problem 5. Consider the set P of points below:

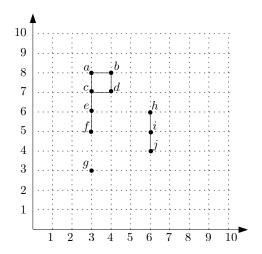


Set $\epsilon = 1$ and minpts = 3. Show the clusters output by DBSCAN, assuming that the distance metric is Euclidean distance.

Answer. First, identify the core and non-core points, shown below in black and white, respectively.



Then, the algorithm temporarily ignores the non-core points, and draws an edge between each pair of core points that are within distance r = 1. This creates a graph:



It proceeds by computing the connected components of the graph. In the above graph, there are 3 connected components: $C_1 = \{a, b, c, d, e, f\}, C_2 = \{g\}, \text{ and } C_3 = \{h, i, j\}.$

 C_1 , C_2 and C_3 form a cluster, respectively. In the final step, the algorithm assigns each non-core point z to each cluster that contains a core point whose neighborhood covers z. Consider, for example, point m. It is added to P_1 because m is in the neighborhood of f. After assigning all the non-core points, we get $\{a, b, c, d, e, f, k, m, o\}$, $\{g, n, l\}$, $\{h, i, j, p, q, r, s\}$ as the final clusters. Note that point t is regarded as noise.

Problem 6. Given a pair of parameters ϵ and *minpts*, describe an algorithm to compute the DBSCAN clusters in $O(n^2)$ time, assuming that the distance metric is Euclidean distance, and that the dimensionality of the data space is a constant.

Answer. First, compute the distance graph. Then, discard all the edges whose weights are more than ϵ . All these can be done in $O(n^2)$ time. Let G be the graph obtained at this moment.

For each vertex, get its degree in G. It is a core point if its degree is at least minpts - 1. Otherwise, it is a non-core point. Remove the non-core points from G and their edges. Let G' be the graph obtained at this moment. All these can be done in $O(n^2)$ time.

Now, compute the connected components of G', which takes $O(n^2)$ time. Treat each connected component as a cluster.

For every non-core point u, look at its neighbors in G. If u has a core-point neighbor v, add u to the cluster of v. Doing so for all the u takes $O(n^2)$ time in total.