CMSC5724: Exercise List 9

Answer Problems 1-2 based on the following dataset:

Problem 1. Recall that, in discussing hierarchical clustering, we introduced 3 distance metrics on two sets of points: min, max, and mean. Let $S_{1}=\{a, c\}$ and $S_{2}=\{b, d\}$. What is the distance between S_{1} and S_{2} under those three metrics, respectively (assuming that the distance of two points is calculated by Euclidean distance)?

Answer.

Min: $\sqrt{2}$, as is the distance between a and b.
Max: $\sqrt{17}$, as is the distance between a and d.
Mean: $(\sqrt{2}+\sqrt{17}+2+\sqrt{5}) / 4$, as is the average of $\operatorname{dist}(a, c), \operatorname{dist}(a, d), \operatorname{dist}(c, b)$ and $\operatorname{dist}(c, d)$.
Problem 2. Show the dendrogram returned by the Agglomerative algorithm under the min and max metrics, respectively.

Answer.

Min. At the beginning of the algorithm, each point is regarded as a singleton cluster. In other words, there are 4 clusters, whose mutual distances are given by:

	a	b	c	d
a	-	$\sqrt{2}$	$\sqrt{10}$	$\sqrt{17}$
b	-	-	2	$\sqrt{13}$
c	-	-	-	$\sqrt{5}$

Since a and b have the smallest distance (among all pairs of clusters), the algorithm merges the two points into a cluster which we denote as S_{1}. Now, there are 3 clusters left, whose mutual distances are:

	S_{1}	c	d
S_{1}	-	2	$\sqrt{13}$
c	-	-	$\sqrt{5}$

Hence, the algorithm merges S_{1} with c into a cluster which we denote as S_{2}. Now that there are only two clusters left (i.e., S_{2} and d), the last merge is trivial. The following dendrogram illustrates the above process.

Max. Repeating the above algorithm with respect to max results in the following dendrogram:

Problem 3. Suppose that we use $d_{\text {min }}$ to define the similarity of two clusters C_{1}, C_{2}. Give an algorithm to compute the dendrogram on n points in $O\left(n^{2} \log n\right)$ time.

Answer. Our algorithm maintains a BST T at any moment that stores the distances of all pairs of the current clusters.

At the beginning, each object forms a cluster by itself. Hence, T contains $\binom{n}{2}$ cluster-pair distances.

Consider, in general, that the current clusters are $C_{1}, C_{2}, \ldots, C_{k}$. We remove the smallest clusterpair distance from T. Suppose that this is the distance between C_{i} and C_{j}. Then:

- We merge C_{i} and C_{j} into a new cluster $C_{n e w}$.
- Delete from T the distance between C_{i} and every other cluster. Do the same for C_{j}.
- Insert into T the distance between $C_{\text {new }}$ and every other existing cluster C (i.e., C_{1}, \ldots, C_{k} except $\left.C_{i}, C_{j}\right)$.

To implement the above, the key is to compute $d\left(C_{\text {new }}, C\right)$, namely, the distance between $C_{\text {new }}$ and C. We achieve the purpose as follows:

$$
d_{\min }\left(C_{\text {new }}, C\right)=\min \left\{d_{\min }\left(C_{i}, C\right), d_{\min }\left(C_{j}, C\right)\right\}
$$

In summary, when there are $k \geq 2$ clusters left, the next merge requires:

- Removing the minimum distance from T
- Deleting $O(k)$ distances into T
- Inserting $O(k)$ distances into T.

The total time for the above operations is $O\left(k \log k^{2}\right)=O(k \log k)$ (notice that T stores $O\left(k^{2}\right)$ distances).

Therefore, the total running time of our algorithm is

$$
\sum_{k=2}^{n} O(k \log k)=O\left(n^{2} \log n\right)
$$

Problem 4. Suppose that we use $d_{\text {mean }}$ to define the similarity of two clusters C_{1}, C_{2}. As discussed in the lecture, $d_{\text {mean }}\left(C_{1}, C_{2}\right)=\frac{1}{\left|C_{1}\right|\left|C_{2}\right|} \sum_{\left(p_{1}, p_{2}\right) \in C_{1} \times C_{2}} \operatorname{dist}\left(p_{1}, p_{2}\right)$. Give an algorithm to compute the dendrogram on n points in $O\left(n^{2} \log n\right)$ time.

Answer. The algorithm is precisely the same as the one in Problem 3, but with one change. Recall that the key to ensure $O\left(n^{2} \log n\right)$ time is to compute $d\left(C_{\text {new }}, C\right)$ in constant time from $d\left(C_{i}, C\right)$ and $d\left(C_{j}, C\right)$ when we merge together C_{i} and C_{j} into $C_{\text {new }}$. When $d=d_{\text {mean }}$, we can do so as follows:

$$
d_{\text {mean }}\left(C_{\text {new }}, C\right)=\frac{\left|C_{i}\right| \cdot d_{\text {mean }}\left(C_{i}, C\right)+\left|C_{j}\right| \cdot d_{\text {mean }}\left(C_{j}, C\right)}{\left|C_{i}\right|+\left|C_{j}\right|}
$$

Problem 5. Consider the set P of points below:

Set $\epsilon=1$ and minpts $=3$. Show the clusters output by DBSCAN, assuming that the distance metric is Euclidean distance.

Answer. First, identify the core and non-core points, shown below in black and white, respectively.

Then, the algorithm temporarily ignores the non-core points, and draws an edge between each pair of core points that are within distance $r=1$. This creates a graph:

It proceeds by computing the connected components of the graph. In the above graph, there are 3 connected components: $C_{1}=\{a, b, c, d, e, f\}, C_{2}=\{g\}$, and $C_{3}=\{h, i, j\}$.
C_{1}, C_{2} and C_{3} form a cluster, respectively. In the final step, the algorithm assigns each noncore point z to each cluster that contains a core point whose neighborhood covers z. Consider, for example, point m. It is added to P_{1} because m is in the neighborhood of f. After assigning all the non-core points, we get $\{a, b, c, d, e, f, k, m, o\},\{g, n, l\},\{h, i, j, p, q, r, s\}$ as the final clusters. Note that point t is regarded as noise.

Problem 6. Given a pair of parameters ϵ and minpts, describe an algorithm to compute the DBSCAN clusters in $O\left(n^{2}\right)$ time, assuming that the distance metric is Euclidean distance, and that the dimensionality of the data space is a constant.

Answer. First, compute the distance graph. Then, discard all the edges whose weights are more than ϵ. All these can be done in $O\left(n^{2}\right)$ time. Let G be the graph obtained at this moment.

For each vertex, get its degree in G. It is a core point if its degree is at least minpts -1 . Otherwise, it is a non-core point. Remove the non-core points from G and their edges. Let G^{\prime} be the graph obtained at this moment. All these can be done in $O\left(n^{2}\right)$ time.

Now, compute the connected components of G^{\prime}, which takes $O\left(n^{2}\right)$ time. Treat each connected component as a cluster.

For every non-core point u, look at its neighbors in G. If u has a core-point neighbor v, add u to the cluster of v. Doing so for all the u takes $O\left(n^{2}\right)$ time in total.

