
CMSC5724: Exercise List 7

Problem 1. Consider the training set P of points shown below:

A(−1,−5)

C(4,−2)

B(−3, 1)

D(1, 4)

where the two dots have label 1, the cross has label 2, and the box has label 3. Run multiclass
Perceptron to find a generalized linear classifier to separate P .

Answer: At the beginning, w⃗1 = w⃗2 = w⃗3 = [0, 0].
Round 1: Violation point D, ℓ = 2, z = 1. Hence, w⃗1 = [−1,−4], w⃗2 = [1, 4], w⃗3 = [0, 0].
Round 2: Violation point B, ℓ = 3, z = 2. Hence, w⃗1 = [−1,−4], w⃗2 = [4, 3], w⃗3 = [−3, 1].
Round 3: Violation point C, ℓ = 1, z = 2. Hence, w⃗1 = [3,−6], w⃗2 = [0, 5], w⃗3 = [−3, 1].
No more violations.

Problem 2. Calculate the margin of the classifier you obtained in the previous problem.

Answer: Let W be the set of weight vectors obtained.

margin(A | W ) = min ( w⃗1·A⃗−w⃗2·A⃗√
2×

∑3
1 |wi|2

, w⃗1·A⃗−w⃗3·A⃗√
2×

∑3
1 |wi|2

) = min (27−(−25)√
2×80

, 27−(−2)√
2×80

) = 29√
2×80

Similarly,

margin(B | W ) = min (10−(−15)√
2×80

, 10−5√
2×80

) = 5√
2×80

margin(C | W ) = min (24−(−10)√
2×80

, 24−(−14)√
2×80

) = 34√
2×80

margin(D | W ) = min (20−(−21)√
2×80

, 20−1√
2×80

) = 19√
2×80

Therefore, the margin equals 5√
2×80

.

Problem 3. Suppose we run multiclass Perceptron on k = 2. Let {w⃗1, w⃗2} be the set of weight
vectors returned. Prove: w⃗1 = −w⃗2.

Answer: It suffices to prove that w⃗1 + w⃗2 = 0⃗ after every round. This obviously holds at the
beginning because w⃗1 = w⃗2 = 0⃗. Suppose that w⃗1 + w⃗2 = 0⃗ before the next round starts. Let p be
the violation point used in the round to do adjustments. Since we always add p⃗ to a weight vector
but subtract p⃗ from the other weight vector, w⃗1 + w⃗2 is still 0⃗ at the end of the round.

Problem 4. Continuing on Problem 3, prove: the “margin” of W = {w⃗1, w⃗2} as defined in
multiclass Perceptorn is precisely the “margin” as defined in (the traditional) Perceptorn (i.e., the
smallest distance from a point in the training set P to the separation plane).



Answer: It suffices to prove: for each point p in the training set, margin(p | W ) is precisely the
distance from p to the separation plane.

Without loss of generality, assume that p is classified as class 1, i.e., w⃗1 · p⃗ > w⃗2 · p⃗. We have:

margin(p | W ) =
w⃗1 · p⃗− w⃗2 · p⃗√
2(|w⃗1|2 + |w⃗2|2)

=
2w⃗1 · p⃗√
4|w⃗1|2

=
w⃗1 · p⃗
|w⃗1|

which is the distance from p to the separation plane, as promised.

Problem 5 (Multi-Class Generalization Theorem). Let X be an instance space, Y =
{1, 2., ..., k} be a label space, and D a distribution over X × Y. Let S be a set of independent
samples drawn from D. A classifier h is a function h : X → Y. For every such h, define

er(h) = Pr
(x,y)∼D

[h(x) ̸= y]

erS(h) =
|{(x, y) ∈ S | h(x) ̸= y}|

|S|
.

Let H be a finite set of classifiers. Fix a value δ such that 0 < δ ≤ 1. Prove: with probability at
least 1− δ, we have the property that

er(h) ≤ erS(h) +

√
ln(1/δ) + ln |H|

2|S|

holds true for every h ∈ H.

Answer: The proof is precisely the same as our proof for the generalization theorem presented in
Lecture 1.
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