## CMSC5724: Exercise List 6

Problem 1. Prove the theorem on Slide 6 of the lecture notes on the kernel method without the interleaving assumption.

Problem 2. Consider the kernel function $K(p, q)=(\boldsymbol{p} \cdot \boldsymbol{q}+1)^{3}$, where $\boldsymbol{p}=(p[1], p[2])$ and $\boldsymbol{q}=(q[1], q[2])$ are 2 -dimensional vectors. Recall that there is a mapping function $\phi$ from $\mathbb{R}^{2}$ to $\mathbb{R}^{d}$ for some integer $d$ such that $K(p, q)$ equals the dot product of $\phi(p)$ and $\phi(q)$. Give the details of $\phi$.

Problem 3. Consider a set $P$ of 2 D points each labeled either -1 or 1 . It is known that the points of the two labels can be linearly separated after applying the Kernel function $K(p, q)=(\boldsymbol{p} \cdot \boldsymbol{q}+1)^{2}$. Prove that they can also be linearly separated by applying the kernel function $K^{\prime}(p, q)=(2 \boldsymbol{p} \cdot \boldsymbol{q}+3)^{2}$.

Problem 4. Consider a set $P$ of 2 D points that has three label-1 points $p_{1}(-2,-2), p_{2}(1,1), p_{3}(3,3)$, and two label $(-1)$ points $q_{1}(-2,2), q_{2}(2,-2)$. Answer the following questions:

- Use Perceptron to find a separation plane $\pi$ using the Kernel function $K(x, y)=(x \cdot y+1)^{2}$.
- According to $\pi$, what is the label of point $(2,2)$ ?

Problem 5. Same settings as in Problem 3. Calculate the distance from $\phi\left(p_{1}\right)$ to the separation plane you find in the feature space.

Problem 6. Let $P$ be a set of points in $\mathbb{R}^{d}$. Prove: the Gaussian kernel produces a kernel space where every point $p \in P$ is mapped to a point $\phi(p)$ satisfying $|\phi(p)|=1$, namely, $\phi(p)$ is on the surface of an infinite-dimensional sphere.

Problem 7. For any a $d$-dimensional sphere centered at the origin of $\mathbb{R}^{d}$, we know that any set of $d+1$ points on the sphere's surface can be shattered by the set of linear classifiers. Use this fact to prove that any finite set $P$ of points in $\mathbb{R}^{d}$ can be linearly separated in the kernel space produced by the Gaussian kernel. (Hint: use the conclusion of Problem 6 and use the fact that the Gaussian kernel produces a kernel space of infinite dimensionality.)

