CMSC5724: Exercise List 6

Problem 1. Prove the theorem on Slide 6 of the lecture notes on the kernel method without the interleaving assumption.

Answer: Sort the input P and divide it into maximal subsets such that the points in each subset are consecutive and share the same label. Denote the subsets as $S_{1}, S_{2}, \ldots, S_{l}$ in ascending order (for some $l \geq 1$). For example, suppose P has points $p_{1}, p_{2}, \ldots, p_{10}$ where p_{2}, p_{3}, and p_{4} have label 1 , and the other points label -1 . Then, $l=3$; and $S_{1}=\left\{p_{1}\right\}, S_{2}=\left\{p_{2}, p_{3}, p_{4}\right\}$, and $S_{3}=\left\{p_{5}, p_{6}, \ldots, p_{10}\right\}$.
W.o.l.g., we will assume that the points in S_{1} have label -1 and that l is an odd number. Find a point q_{i} for each $i \in[1, l-1]$ such that q_{i} is larger than the points in S_{i} but smaller than those in S_{i+1}. Construct a function:

$$
\begin{equation*}
f(x)=-\left(x-q_{1}\right)\left(x-q_{2}\right) \ldots\left(x-q_{l-1}\right) . \tag{1}
\end{equation*}
$$

For an odd $i, f(p)<0$ for all $p \in S_{i}$. For an even $i, f(p)>0$ for all $p \in S_{i}$. The rest of the proof proceeds as discussed in the lecture.

Problem 2. Consider the kernel function $K(p, q)=(\boldsymbol{p} \cdot \boldsymbol{q}+1)^{3}$, where $\boldsymbol{p}=(p[1], p[2])$ and $\boldsymbol{q}=(q[1], q[2])$ are 2-dimensional vectors. Recall that there is a mapping function ϕ from \mathbb{R}^{2} to \mathbb{R}^{d} for some integer d such that $K(p, q)$ equals the dot product of $\phi(p)$ and $\phi(q)$. Give the details of ϕ.

Answer: Rewrite K as dot product form.

$$
\begin{aligned}
K(p, q)= & (p[1] q[1]+p[2] q[2]+1)^{3} \\
= & p[1]^{3} q[1]^{3}+p[2]^{3} q[2]^{3}+1+3 p[1] q[1] p[2]^{2} q[2]^{2} \\
& +3 p[1]^{2} q[1]^{2} p[2] q[2]+3 p[1] q[1]+3 p[1]^{2} q[1]^{2}+3 p[2] q[2]+3 p[2]^{2} q[2]^{2}+6 p[1] q[1] p[2] q[2] \\
= & \left(p[1]^{3}, p[2]^{3}, 1, \sqrt{3} p[1] p[2]^{2}, \sqrt{3} p[1]^{2} p[2], \sqrt{3} p[1], \sqrt{3} p[2], \sqrt{3} p[1]^{2}, \sqrt{3} p[2]^{2}, \sqrt{6} p[1] p[2]\right) \\
& \cdot\left(q[1]^{3}, q[2]^{3}, 1, \sqrt{3} q[1] q[2]^{2}, \sqrt{3} q[1]^{2} q[2], \sqrt{3} q[1], \sqrt{3} q[2], \sqrt{3} q[1]^{2}, \sqrt{3} q[2]^{2}, \sqrt{6} q[1] q[2]\right)
\end{aligned}
$$

Therefore, $\phi(x)=\left(x[1]^{3}, x[2]^{3}, 1, \sqrt{3} x[1] x[2]^{2}, \sqrt{3} x[1]^{2} x[2], \sqrt{3} x[1], \sqrt{3} x[2], \sqrt{3} x[1]^{2}, \sqrt{3} x[2]^{2}, \sqrt{6} x[1] x[2]\right)$.
Problem 3. Consider a set P of 2D points each labeled either -1 or 1 . It is known that the points of the two labels can be linearly separated after applying the Kernel function $K(p, q)=(\boldsymbol{p} \cdot \boldsymbol{q}+1)^{2}$. Prove that they can also be linearly separated by applying the kernel function $K^{\prime}(p, q)=(2 \boldsymbol{p} \cdot \boldsymbol{q}+3)^{2}$.

Answer: Using the method explained in Problem 1, we can find the mapping functions ϕ and ϕ^{\prime} for K and K^{\prime}, respectively:

$$
\begin{aligned}
\phi(p) & =\left(p[1]^{2}, p[2]^{2}, 1, \sqrt{2} p[1], \sqrt{2} p[2], \sqrt{2} p[1] p[2]\right) \\
\phi^{\prime}(p) & =\left(2 p[1]^{2}, 2 p[2]^{2}, 3,2 \sqrt{3} p[1], 2 \sqrt{3} p[2], 2 \sqrt{2} p[1] p[2]\right) .
\end{aligned}
$$

Let π be the plane that separates the points under ϕ. If $\boldsymbol{w} \cdot \phi(x)=0$ is the equation for π, then (i) for every point p of label $1, \boldsymbol{w} \cdot \phi(p)>0$, and (ii) for every point p of label $-1, \boldsymbol{w} \cdot \phi(p)<0$.

Set $\boldsymbol{w}^{\prime}=\left(\frac{\boldsymbol{w}[1]}{2}, \frac{\boldsymbol{w}[2]}{2}, \frac{\boldsymbol{w}[3]}{3}, \frac{\boldsymbol{w}[4]}{\sqrt{6}}, \frac{\boldsymbol{w}[5]}{\sqrt{6}}, \frac{\boldsymbol{w}[6]}{\sqrt{6}}\right)$. Let π^{\prime} be the plane given by the equation $\boldsymbol{w}^{\prime} \cdot \phi^{\prime}(x)=0$.

We claim that π^{\prime} also separates the points. Indeed, for every point p of label 1 , we have:

$$
\begin{aligned}
& \boldsymbol{w}^{\prime} \cdot \phi^{\prime}(p) \\
& =\frac{\boldsymbol{w}[1]}{2} \cdot 2 p[1]^{2}+\frac{\boldsymbol{w}[2]}{2} \cdot 2 p[2]^{2}+\frac{\boldsymbol{w}[3]}{3} \cdot 3+\frac{\boldsymbol{w}[4]}{\sqrt{6}} \cdot 2 \sqrt{3} p[1]+\frac{\boldsymbol{w}[5]}{\sqrt{6}} \cdot 2 \sqrt{3} p[2]+\frac{\boldsymbol{w}[6]}{\sqrt{6}} \cdot 2 \sqrt{3} p[1] p[2] \\
& =\boldsymbol{w}[1] \cdot p[1]^{2}+\boldsymbol{w}[2] \cdot p[2]^{2}+\boldsymbol{w}[3]+\sqrt{2} \boldsymbol{w}[4] \cdot p[1]+\sqrt{2} \boldsymbol{w}[5] \cdot p[2]+\sqrt{2} \boldsymbol{w}[6] \cdot p[1] p[2] \\
& =\boldsymbol{w} \cdot \phi(p)>0 .
\end{aligned}
$$

Likewise, we can prove that, for every point p of label -1 , it holds that $\boldsymbol{w}^{\prime} \cdot \phi^{\prime}(p)=\boldsymbol{w} \cdot \phi(p)<0$.
Problem 4. Consider a set P of 2D points that has three label-1 points $p_{1}(-2,-2), p_{2}(1,1), p_{3}(3,3)$, and two label-(-1) points $q_{1}(-2,2), q_{2}(2,-2)$. Answer the following questions:

- Use Perceptron to find a separation plane π using the Kernel function $K(x, y)=(x \cdot y+1)^{2}$.
- According to π, what is the label of point $(2,2)$?

Answer: Initially, let $\boldsymbol{w}_{0}=0$. Perceptron runs as follows:
Iteration 1. Since $\boldsymbol{w}_{0} \cdot \phi\left(p_{1}\right)=0$, we set $\boldsymbol{w}_{1}=\boldsymbol{w}_{0}+\phi\left(p_{1}\right)=\phi\left(p_{1}\right)$.
Iteration 2. Since $\boldsymbol{w}_{1} \cdot \phi\left(q_{1}\right)=K\left(p_{1}, q_{1}\right)=1>0$, we set $\boldsymbol{w}_{2}=\boldsymbol{w}_{1}-\phi\left(q_{1}\right)=\phi\left(p_{1}\right)-\phi\left(q_{1}\right)$.
Iteration 3. There are no more violations for \boldsymbol{w}_{2}. So we have found a separation plane $\boldsymbol{w}_{2} \cdot \phi(x)=0$ such that (i) $\boldsymbol{w}_{2} \cdot \phi(x)>0$ for every label-1 point p, and (ii) $\boldsymbol{w}_{2} \cdot \phi(x)<0$ for every label-(-1) point p.

Now consider the point $r=(2,2)$. As $\boldsymbol{w}_{2} \cdot \phi(r)=K\left(p_{1}, r\right)-K\left(q_{1}, r\right)=48>0$, we classify r as label 1.

Problem 5. Same settings as in Problem 3. Calculate the distance from $\phi\left(p_{1}\right)$ to the separation plane you find in the feature space.

Answer: We know from the solution of Problem 3 that the weight vector of the separation plane (in the feature space) is $\boldsymbol{w}=\phi\left(p_{1}\right)-\phi\left(q_{1}\right)$.

The distance from $\phi\left(p_{1}\right)$ to this plane equals

$$
\begin{aligned}
\frac{\boldsymbol{w} \cdot \phi\left(p_{1}\right)}{|\boldsymbol{w}|} & =\frac{\boldsymbol{w} \cdot \phi\left(p_{1}\right)}{\sqrt{\boldsymbol{w} \cdot \boldsymbol{w}}} \\
& =\frac{\left(\phi\left(p_{1}\right)-\phi\left(q_{1}\right)\right) \cdot \phi\left(p_{1}\right)}{\sqrt{\left(\phi\left(p_{1}\right)-\phi\left(q_{1}\right)\right) \cdot\left(\phi\left(p_{1}\right)-\phi\left(q_{1}\right)\right)}} \\
& =\frac{\phi\left(p_{1}\right) \cdot \phi\left(p_{1}\right)-\phi\left(p_{1}\right) \cdot \phi\left(q_{1}\right)}{\sqrt{\phi\left(p_{1}\right) \cdot \phi\left(p_{1}\right)-2 \phi\left(p_{1}\right) \cdot \phi\left(q_{1}\right)+\phi\left(q_{1}\right) \cdot \phi\left(q_{1}\right)}} \\
& =\frac{K\left(p_{1}, p_{1}\right)-K\left(p_{1}, q_{1}\right)}{\sqrt{K\left(p_{1}, p_{1}\right)-2 K\left(p_{1}, q_{1}\right)+K\left(q_{1}, q_{1}\right)}} \\
& =\frac{81-1}{\sqrt{81-2 \times 1+81}} \\
& =80 / \sqrt{160} .
\end{aligned}
$$

Problem 6. Let P be a set of points in \mathbb{R}^{d}. Prove: the Gaussian kernel produces a kernel space where every point $p \in P$ is mapped to a point $\phi(p)$ satisfying $|\phi(p)|=1$, namely, $\phi(p)$ is on the surface of an infinite-dimensional sphere.

Answer: A Gaussian kernel has the form $K(p, q)=\exp \left(-\frac{\operatorname{dist}(p, q)^{2}}{2 \sigma^{2}}\right)$ where p and q are points in \mathbb{R}^{d}. in the kernel space, The distance of $\phi(p)$ to the origin is $\sqrt{\phi(p) \cdot \phi(p)}$, which equals

$$
\sqrt{K(p, p)}=\sqrt{\exp \left(-\frac{\operatorname{dist}(p, p)^{2}}{2 \sigma^{2}}\right)}=\sqrt{\exp (0)}=1
$$

Problem 7. For any a d-dimensional sphere centered at the origin of \mathbb{R}^{d}, we know that any set of $d+1$ points on the sphere's surface can be shattered by the set of linear classifiers. Use this fact to prove that any finite set P of points in \mathbb{R}^{d} can be linearly separated in the kernel space produced by the Gaussian kernel. (Hint: use the conclusion of Problem 6 and use the fact that the Gaussian kernel produces a kernel space of infinite dimensionality.)

Answer: By the given fact that any $d+1$ points on a sphere's surface can be shattered, we know:
Fact 1: For any d-dimensional sphere centered at the origin of \mathbb{R}^{d} and any set S of n points on the sphere such that $d \geq n-1, S$ can be shattered by the set of d-dimensional linear classifiers.

By the conclusion of Problem 6, every point $p \in P$ is mapped into a point $\phi(p)$ on the surface of an infinite-dimensional sphere centering at the origin. The claim in Problem 7 then follows directly from Fact 1 and Problem 6.

