CMSC5724: Exercise List 5

Answer all the problems below based on the following set P of points A, B, C and D :

where " + " represents label 1 and "-" represents label -1 .
Problem 1. What is the margin of the separation line $\ell:-x-5 y=0$?
Problem 2. Run Margin Perceptron on P with $\gamma_{\text {guess }}=0.1$, and give the equation of the line that is maintained by the algorithm at the end of each iteration.

Problem 3. Same as the previous problem but with $\gamma_{\text {guess }}=4 / \sqrt{26}$.
Problem 4. Give an instance of quadratic programming to find an origin-passing separation plane with the maximum margin.

Problem 5. Consider the following instance of quadratic programming in \mathbb{R}^{d} :
minimize $|\boldsymbol{w}|$ subject to
$\boldsymbol{w} \cdot \boldsymbol{p}_{i} \geq 1$ for each $i \in[1, n]$
where $\boldsymbol{p}_{1}, \ldots, \boldsymbol{p}_{n}$ are n given points in \mathbb{R}^{d}. Prove: if an optimal \boldsymbol{w} exists, there must exist at least one $i \in[1, n]$ such that $\boldsymbol{w} \cdot \boldsymbol{p}_{i}=1$.

Problem 6. Let $\gamma_{\text {opt }}$ be the maximum margin of an origin-passing separation plane on a set P of points. Denote by R the largest distance from a point in P to the origin.

Suppose that, given a value γ, margin Perceptron ensures the following:

- if it terminates, it definitely returns a separation plane with margin at least $\alpha \cdot \gamma$, where α is an arbitrary constant less than 1 ;
- if $\gamma \leq \gamma_{\text {opt }}$, it definitely terminates after at most $c \cdot R^{2} / \gamma^{2}$ corrections, for some constant (which depends on α).

Design an algorithm to find a separation plane with margin at least $\alpha \cdot \beta \cdot \gamma_{\text {opt }}$ after $O\left(R^{2} / \gamma_{o p t}^{2}\right)$ corrections in total, where β can be any constant less than 1 .

