CMSC5724: Exercise List 5

Answer all the problems below based on the following set P of points A, B, C and D :

where " + " represents label 1 and "-" represents label -1 .
Problem 1. What is the margin of the separation line $\ell:-x-5 y=0$?
Answer: The distance between ℓ and the points in P are as follows:

- $A: \frac{|-1 \times(-1)-5 \times(-5)|}{\sqrt{(-1)^{2}+(-5)^{2}}}=\sqrt{26}$.
- $B: \frac{|-4 \times(-1)+1 \times(-5)|}{\sqrt{(-1)^{2}+(-5)^{2}}}=1 / \sqrt{26}$.
- $C: \frac{|4 \times(-1)-1 \times(-5)|}{\sqrt{(-1)^{2}+(-5)^{2}}}=1 / \sqrt{26}$.
- $D: \frac{|1 \times(-1)+4 \times(-5)|}{\sqrt{(-1)^{2}+(-5)^{2}}}=21 / \sqrt{26}$.

Therefore, the margin of ℓ is $1 / \sqrt{26}$.
Problem 2. Run Margin Perceptron on P with $\gamma_{\text {guess }}=0.1$, and give the equation of the line that is maintained by the algorithm at the end of each iteration.

Answer: Let us represent the line maintained by Margin Perceptron as $c_{1} x+c_{2} y=0$. Define $\vec{c}=\left[c_{1}, c_{2}\right]$. At the beginning of Margin Perceptron, $\vec{c}=[0,0]$. We use \vec{A} to denote the vector $[-1,-5]$, obtained by listing the coordinates of A. Define $\vec{B}, \vec{C}, \vec{D}$ similarly.

Iteration 1. A does not satisfy $\vec{A} \cdot \vec{c}>0$. So we update \vec{c} to $\vec{c}+\vec{A}=[0,0]+[-1,-5]=[-1,-5]$.
Iteration 2. No more violation. So we have found a separation line $-x-5 y=0$.
Problem 3. Same as the previous problem but with $\gamma_{\text {guess }}=4 / \sqrt{26}$.
Answer: Starting with $\vec{c}=[0,0]$, Margin Perceptron runs as follows:

Iteration 1. A does not satisfy $\vec{A} \cdot \vec{c}>0$. So we update \vec{c} to $\vec{c}+\vec{A}=[0,0]+[-1,-5]=[-1,-5]$.
Iteration 2. The distance between B and the line determined by \vec{c} is $1 / \sqrt{26}$, which is smaller than $\gamma_{1} / 2$. So we update \vec{c} to $\vec{c}-\vec{B}=[-1,-5]-[-4,1]=[3,-6]$.

Iteration 3. No more violation. So we have found a separation line $3 x-6 y=0$.
Problem 4. Give an instance of quadratic programming to find an origin-passing separation plane with the maximum margin.

Answer: Minimize $w_{1}^{2}+w_{2}^{2}$ subject to the following constraints:

- $(-1) w_{1}+(-5) w_{2} \geq 1$
- $4 w_{1}+(-1) w_{2} \geq 1$
- $(-4) w_{1}+w_{2} \leq-1$
- $w_{1}+4 w_{2} \leq-1$

Problem 5. Consider the following instance of quadratic programming in \mathbb{R}^{d} :

$$
\begin{array}{r}
\text { minimize }|\boldsymbol{w}| \text { subject to } \\
\boldsymbol{w} \cdot \boldsymbol{p}_{i} \geq 1 \text { for each } i \in[1, n]
\end{array}
$$

where $\boldsymbol{p}_{1}, \ldots, \boldsymbol{p}_{n}$ are n given points in \mathbb{R}^{d}. Prove: if an optimal \boldsymbol{w} exists, there must exist at least one $i \in[1, n]$ such that $\boldsymbol{w} \cdot \boldsymbol{p}_{i}=1$.

Answer: We will give a proof by contradiction. Suppose that \boldsymbol{w} is an optimal solution and $\boldsymbol{w} \cdot \boldsymbol{p}_{\boldsymbol{i}}>1$ for every $i \in[1, n]$. Define $\tau=\min _{i} \boldsymbol{w} \cdot \boldsymbol{p}_{\boldsymbol{i}}$ and $\boldsymbol{w}^{\prime}=\boldsymbol{w} / \tau$. We know $\tau>1$ (otherwise, there exists an i such that $\boldsymbol{w} \cdot \boldsymbol{p}_{i}=1$):

- $\boldsymbol{w} \cdot \boldsymbol{p}_{\boldsymbol{i}} \geq \tau$ for each $i \in[1, n]$
which implies
- $\boldsymbol{w}^{\prime} \cdot \boldsymbol{p}_{\boldsymbol{i}} \geq 1$ for each $i \in[1, n]$.

Hence, \boldsymbol{w}^{\prime} is a feasible solution of the quadratic programming. However, the fact $\left|\boldsymbol{w}^{\prime}\right|<\boldsymbol{w}$ contradicts the optimality of \boldsymbol{w}.

Problem 6. Let $\gamma_{\text {opt }}$ be the maximum margin of an origin-passing separation plane on a set P of points. Denote by R the largest distance from a point in P to the origin.

Suppose that, given a value γ, margin Perceptron ensures the following:

- if it terminates, it definitely returns a separation plane with margin at least $\alpha \cdot \gamma$, where α is an arbitrary constant less than 1 ;
- if $\gamma \leq \gamma_{\text {opt }}$, it definitely terminates after at most $c \cdot R^{2} / \gamma^{2}$ corrections, for some constant (which depends on α).

Design an algorithm to find a separation plane with margin at least $\alpha \cdot \beta \cdot \gamma_{\text {opt }}$ after $O\left(R^{2} / \gamma_{o p t}^{2}\right)$ corrections in total, where β can be any constant less than 1 .

Answer: Use exactly the same algorithm taught in the class that repeatedly runs margin Perceptron with an increasingly smaller γ, except that we set γ to $\beta^{i-1} \cdot R$ in the i-th run.

Suppose that the value of γ in the final run is $\gamma_{\text {final }}=\beta^{x} \cdot R$. Since we did not stop at the previous run, we know that $\gamma_{\text {final }} / \beta>\gamma_{\text {opt }}$, namely, $\gamma_{\text {final }}>\beta \cdot \gamma_{\text {opt }}$.

In the final run, the separation plane returned must have a margin at least $\alpha \cdot \gamma \geq \alpha \cdot \beta \cdot \gamma_{\text {opt }}$.
The total number of corrections is no more than

$$
c R^{2}\left(\frac{1}{\gamma_{\text {final }}^{2}}+\frac{\beta^{2}}{\gamma_{\text {final }}^{2}}+\frac{\beta^{4}}{\gamma_{\text {final }}^{2}} \ldots\right)=O\left(R^{2} / \gamma_{\text {final }}^{2}\right)=O\left(R^{2} / \gamma_{\text {opt }}^{2}\right) .
$$

