CMSC5724: Exercise List 4

Problem 1. A rectangular classifier h in \mathbb{R}^{2} is described by an axis-parallel rectangle $r=$ $\left[x_{1}, x_{2}\right] \times\left[y_{1}, y_{2}\right]$. Function h maps all the points covered by r to label 1 , and all the points outside r to label -1 . Give a set of 4 points \mathbb{R}^{2} that can be shattered by the class of rectangular classifiers.

Problem 2. Prove: there does not exist any set of 5 points in \mathbb{R}^{2} that can be shattered by the class of rectangular classifiers.

Problem 3. Let \mathcal{P} be a set of points in \mathbb{R}^{d} for some integer $d>0$. Let \mathcal{H} be a set of classifiers each of which maps \mathbb{R}^{d} to $\{-1,1\}$. Prove: for any $\mathcal{H}^{\prime} \subseteq \mathcal{H}$, it holds that VC-dim $\left(\mathcal{P}, \mathcal{H}^{\prime}\right) \leq \mathrm{VC}-\operatorname{dim}(\mathcal{P}, \mathcal{H})$.

Problem 4. Denote by $\mathcal{X}=\mathbb{R}^{d}$ (where d is an integer) the instance space and by $\mathcal{Y}=\{-1,1\}$ the label space. Recall that a classifier is a function $h: \mathcal{X} \rightarrow \mathcal{Y}$. Given a classifier h, define its complement as the function $\bar{h}: \mathcal{X} \rightarrow \mathcal{Y}$ which, given an instance $x \in \mathcal{X}$, outputs 1 if $h(x)=-1$, or -1 otherwise. Let \mathcal{H} be a set of classifiers. Define another set of classifiers as follows: $\overline{\mathcal{H}}=\{\bar{h} \mid h \in \mathcal{H}\}$. Prove: $(\mathcal{X}, \mathcal{H})$ and $(\mathcal{X}, \overline{\mathcal{H}})$ have the same VC dimension.

Problem 5*. In this problem, we will see that deciding whether a set of points is linearly separable can be cast as an instance of linear programming.

In the linear programming (LP) problem, we are given n constraints of the form:

$$
\boldsymbol{\alpha}_{i} \cdot \boldsymbol{x} \geq 0
$$

where $i \in[1, n], \boldsymbol{\alpha}_{i}$ is a constant d-dimensional vector (i.e., $\boldsymbol{\alpha}_{i}$ is explicitly given), and \boldsymbol{x} is a d-dimensional vector we search for. Let $\boldsymbol{\beta}$ be another constant d-dimensional vector. Denote by S the set of vectors \boldsymbol{x} satisfying all the n constraints. The objective is to

- either find the best $\boldsymbol{x} \in S$ that maximizes the objective function $\boldsymbol{\beta} \cdot \boldsymbol{x}$ - in this case we say that the LP instance is feasible;
- or declare that S is empty - in this case we say that the instance is infeasible.

Suppose that we have an algorithm \mathcal{A} for solving LP in at most $f(n, d)$ time. Let P be a set of n points in \mathbb{R}^{d}, each given a label that is either 1 or -1 . Explain how to use \mathcal{A} to decide in $O(n d)+f(n, d+1)$ time whether P is linearly separable, i.e., whether there exists a vector \boldsymbol{w} such that:

- $\boldsymbol{w} \cdot \boldsymbol{p}>0$ for each $\boldsymbol{p} \in P$ of label 1 ;
- $\boldsymbol{w} \cdot \boldsymbol{p}<0$ for each $\boldsymbol{p} \in P$ of label -1 .

Note that the inequalities in the above two bullets are strict, while the inequality in LP involves equality.

