CMSC5724: Exercise List 4

Problem 1. A rectangular classifier h in \mathbb{R}^2 is described by an axis-parallel rectangle $r = [x_1, x_2] \times [y_1, y_2]$. Function h maps all the points covered by r to label 1, and all the points outside r to label -1. Give a set of 4 points \mathbb{R}^2 that can be shattered by the class of rectangular classifiers.

Problem 2. Prove: there does not exist any set of 5 points in \mathbb{R}^2 that can be shattered by the class of rectangular classifiers.

Problem 3. Let \mathcal{P} be a set of points in \mathbb{R}^d for some integer d > 0. Let \mathcal{H} be a set of classifiers each of which maps \mathbb{R}^d to $\{-1, 1\}$. Prove: for any $\mathcal{H}' \subseteq \mathcal{H}$, it holds that VC-dim $(\mathcal{P}, \mathcal{H}') \leq$ VC-dim $(\mathcal{P}, \mathcal{H})$.

Problem 4. Denote by $\mathcal{X} = \mathbb{R}^d$ (where *d* is an integer) the instance space and by $\mathcal{Y} = \{-1, 1\}$ the label space. Recall that a classifier is a function $h : \mathcal{X} \to \mathcal{Y}$. Given a classifier *h*, define its *complement* as the function $\bar{h} : \mathcal{X} \to \mathcal{Y}$ which, given an instance $x \in \mathcal{X}$, outputs 1 if h(x) = -1, or -1 otherwise. Let \mathcal{H} be a set of classifiers. Define another set of classifiers as follows: $\bar{\mathcal{H}} = \{\bar{h} \mid h \in \mathcal{H}\}$. Prove: $(\mathcal{X}, \mathcal{H})$ and $(\mathcal{X}, \bar{\mathcal{H}})$ have the same VC dimension.

Problem 5*. In this problem, we will see that deciding *whether* a set of points is linearly separable can be cast as an instance of linear programming.

In the *linear programming* (LP) problem, we are given *n* constraints of the form:

$$\boldsymbol{\alpha}_i \cdot \boldsymbol{x} \ge 0$$

where $i \in [1, n]$, α_i is a constant *d*-dimensional vector (i.e., α_i is explicitly given), and x is a *d*-dimensional vector we search for. Let β be another constant *d*-dimensional vector. Denote by *S* the set of vectors x satisfying all the *n* constraints. The objective is to

- either find the best $x \in S$ that maximizes the *objective function* $\beta \cdot x$ in this case we say that the LP instance is *feasible*;
- or declare that S is empty in this case we say that the instance is *infeasible*.

Suppose that we have an algorithm \mathcal{A} for solving LP in at most f(n, d) time. Let P be a set of n points in \mathbb{R}^d , each given a label that is either 1 or -1. Explain how to use \mathcal{A} to decide in O(nd) + f(n, d+1) time whether P is linearly separable, i.e., whether there exists a vector \boldsymbol{w} such that:

- $\boldsymbol{w} \cdot \boldsymbol{p} > 0$ for each $\boldsymbol{p} \in P$ of label 1;
- $\boldsymbol{w} \cdot \boldsymbol{p} < 0$ for each $\boldsymbol{p} \in P$ of label -1.

Note that the inequalities in the above two bullets are strict, while the inequality in LP involves equality.