CMSC5724: Exercise List 4

Problem 1. A rectangular classifier h in \mathbb{R}^{2} is described by an axis-parallel rectangle $r=$ $\left[x_{1}, x_{2}\right] \times\left[y_{1}, y_{2}\right]$. Function h maps all the points covered by r to label 1 , and all the points outside r to label -1 . Give a set of 4 points \mathbb{R}^{2} that can be shattered by the class of rectangular classifiers.

Solution. $A=(0,1), B=(1,0), C=(-1,0), D=(0,-1)$.
Problem 2. Prove: there does not exist any set of 5 points in \mathbb{R}^{2} that can be shattered by the class of rectangular classifiers.

Solution. Take any 5 points P in \mathbb{R}^{2}. Identify a subset $S \subseteq P$ as follows.

- Initially, S is empty.
- Add to S a point in P with the minimum x-coordinate.
- Add to S a point in P with the maximum x-coordinate.
- Add to S a point in P with the minimum y-coordinate.
- Add to S a point in P with the maximum y-coordinate.

The size of S is at most 4 .
Any axis-parallel rectangle covering S must cover the entire P and, hence, must also cover all the points in $P \backslash S$. Consider the label assignment where the points in S have label 1, and those in $P \backslash S$ have label -1 . No rectangular classifier can produce these labels.

Problem 3. Let \mathcal{P} be a set of points in \mathbb{R}^{d} for some integer $d>0$. Let \mathcal{H} be a set of classifiers each of which maps \mathbb{R}^{d} to $\{-1,1\}$. Prove: for any $\mathcal{H}^{\prime} \subseteq \mathcal{H}$, it holds that VC-dim $\left(\mathcal{P}, \mathcal{H}^{\prime}\right) \leq \operatorname{VC}-\operatorname{dim}(\mathcal{P}, \mathcal{H})$.

Solution. Let $\lambda=\operatorname{VC}-\operatorname{dim}(\mathcal{P}, \mathcal{H})$. It suffices to prove that \mathcal{P} does not contain a subset P of size $\lambda+1$ that can be shattered by \mathcal{H}^{\prime}. This is obvious because such a P can be shattered by \mathcal{H} as well, which contradicts $\mathrm{VC}-\operatorname{dim}(\mathcal{P}, \mathcal{H})=\lambda$.

Problem 4. Denote by $\mathcal{X}=\mathbb{R}^{d}$ (where d is an integer) the instance space and by $\mathcal{Y}=\{-1,1\}$ the label space. Recall that a classifier is a function $h: \mathcal{X} \rightarrow \mathcal{Y}$. Given a classifier h, define its complement as the function $\bar{h}: \mathcal{X} \rightarrow \mathcal{Y}$ which, given an instance $x \in \mathcal{X}$, outputs 1 if $h(x)=-1$, or -1 otherwise. Let \mathcal{H} be a set of classifiers. Define another set of classifiers as follows: $\overline{\mathcal{H}}=\{\bar{h} \mid h \in \mathcal{H}\}$. Prove: $(\mathcal{X}, \mathcal{H})$ and $(\mathcal{X}, \overline{\mathcal{H}})$ have the same VC dimension.

Solution. It suffices to prove that \mathcal{H} can shatter a set $S \subseteq \mathcal{X}$ if and only of $\overline{\mathcal{H}}$ can shatter S. Due to symmetry, it suffices to prove that if \mathcal{H} can shatter S, so can $\overline{\mathcal{H}}$. Consider an arbitrary subset $T \subseteq S$. We will show that $\overline{\mathcal{H}}$ has a function g such that $g(x)=1$ for every $x \in T$, and $g(x)=-1$ for every $x \in S \backslash T$. This will imply that $\overline{\mathcal{H}}$ can shatter S.

Because \mathcal{H} can shatter S, there must exist a function $h \in H$ such that $h(x)=1$ for every $x \in S \backslash T$ and $h(x)=-1$ for every $x \in T$. Therefore, \bar{h} is the function g we are looking for.

Problem 5*. In this problem, we will see that deciding whether a set of points is linearly separable can be cast as an instance of linear programming.

In the linear programming (LP) problem, we are given n constraints of the form:

$$
\boldsymbol{\alpha}_{i} \cdot \boldsymbol{x} \geq 0
$$

where $i \in[1, n], \boldsymbol{\alpha}_{i}$ is a constant d-dimensional vector (i.e., $\boldsymbol{\alpha}_{i}$ is explicitly given), and \boldsymbol{x} is a d-dimensional vector we search for. Let $\boldsymbol{\beta}$ be another constant d-dimensional vector. Denote by S the set of vectors \boldsymbol{x} satisfying all the n constraints. The objective is to

- either find the best $\boldsymbol{x} \in S$ that maximizes the objective function $\boldsymbol{\beta} \cdot \boldsymbol{x}$ - in this case we say that the LP instance is feasible;
- or declare that S is empty - in this case we say that the instance is infeasible.

Suppose that we have an algorithm \mathcal{A} for solving LP in at most $f(n, d)$ time. Let P be a set of n points in \mathbb{R}^{d}, each given a label that is either 1 or -1 . Explain how to use \mathcal{A} to decide in $O(n d)+f(n, d+1)$ time whether P is linearly separable, i.e., whether there exists a vector \boldsymbol{w} such that:

- $\boldsymbol{w} \cdot \boldsymbol{p}>0$ for each $\boldsymbol{p} \in P$ of label 1 ;
- $\boldsymbol{w} \cdot \boldsymbol{p}<0$ for each $\boldsymbol{p} \in P$ of label -1 .

Note that the inequalities in the above two bullets are strict, while the inequality in LP involves equality.

Solution. Construct an instance of $(d+1)$-dimensional LP as follows. For each $p \in P$ with label 1 , create a constraint

$$
\boldsymbol{p} \cdot \boldsymbol{x} \geq t
$$

and for each point $p \in P$ with label -1 , create:

$$
\boldsymbol{p} \cdot \boldsymbol{x} \leq-t
$$

We want to find \boldsymbol{x} and t to satisfy all the n constraints, and in the meantime, maximize t.
To see that this is indeed a $(d+1)$-dimensional LP, define \boldsymbol{y} as the $(d+1)$-dimensional vector that concatenates \boldsymbol{x} and $-t$, namely, the first d components of \boldsymbol{y} constitute x, and the last component of \boldsymbol{y} is $-t$. Accordingly, for each point $\boldsymbol{p} \in P$ of label 1 , define \boldsymbol{p}^{\prime} as the concatenation of \boldsymbol{p} and 1 ; for each point $\boldsymbol{p} \in P$ of label -1 , define \boldsymbol{p}^{\prime} as the concatenation of \boldsymbol{p} and -1 . Then, the constraint of a label-1 point p can be rewritten as

$$
\boldsymbol{p}^{\prime} \cdot \boldsymbol{y} \geq 0
$$

while that of a label-(-1) point p as

$$
\boldsymbol{p}^{\prime} \cdot \boldsymbol{y} \leq 0
$$

The objective is to maximize $(0, \ldots, 0,-1) \cdot \boldsymbol{y}=t$.
The above LP instance can be constructed in $O(n d)$ time. We now deploy the algorithm \mathcal{A} to solve the instance in $f(n, d+1)$ time. Let t^{*} be the returned value for the objective function (note that the instance is always feasible). If $t>0$, we claim that P is linearly separable; otherwise, we claim that P is not.

