CMSC5724: Exercise List 2

Answer the following questions based on the training set below

A	B	C	class
0	2	1	+
1	2	2	+
1	1	0	+
2	0	2	+
1	1	1	+
2	2	2	-
0	1	0	-
0	0	1	-
2	1	0	-
1	0	0	-

Problem 1. Estimate $\operatorname{Pr}[$ class $=+]$ and $\operatorname{Pr}[C=2 \mid$ class $=+]$.
Answer. Since 5 out of 10 records belong to the class + , we estimate $\operatorname{Pr}[$ class $=+]$ to be $1 / 2$. Among the 5 records of class,+ 2 of them have $C=2$. Hence, we estimate $\operatorname{Pr}[C=2 \mid$ class $=+]$ to be $2 / 5$.

Problem 2. Let us make the following conditional independence assumption: conditioned on a specific class, attributes A, B, C are independent. Estimate $\operatorname{Pr}[A=1, B=2 \mid$ class $=+]$.

Answer. Under the assumption we have:

$$
\operatorname{Pr}[A=1, B=2 \mid \text { class }=+]=\operatorname{Pr}[A=1 \mid \text { class }=+] \cdot \operatorname{Pr}[B=2 \mid \text { class }=+]
$$

We estimate $\operatorname{Pr}[A=1 \mid$ class $=+]=3 / 5$ and $\operatorname{Pr}[B=2 \mid$ class $=+]=2 / 5$. Therefore, our estimate of $\operatorname{Pr}[A=1, B=2 \mid$ class $=+]$ is $6 / 25$.

Problem 3. Under the conditional independence assumption, decide the larger probability between $\operatorname{Pr}[$ class $=+\mid A=1, B=2, C=0]$ and $\operatorname{Pr}[$ class $=-\mid A=1, B=2, C=0]$.

Answer. By Bayes Theorem

$$
\operatorname{Pr}[\text { class }=+\mid A=1, B=2, C=0]=\frac{\operatorname{Pr}[A=1, B=2, C=0 \mid \text { class }=+] \cdot \operatorname{Pr}[\text { class }=+]}{\operatorname{Pr}[A=1, B=2, C=0]}
$$

and

$$
\operatorname{Pr}[\text { class }=-\mid A=1, B=2, C=0]=\frac{\operatorname{Pr}[A=1, B=2, C=0 \mid \text { class }=-] \cdot \operatorname{Pr}[\text { class }=-]}{\operatorname{Pr}[A=1, B=2, C=0]}
$$

To compare the two, we only need to estimate the numerators of the above fractions. Towards this purpose, we have:

$$
\begin{aligned}
& \operatorname{Pr}[A=1, B=2, C=0 \mid \text { class }=+] \cdot \operatorname{Pr}[\text { class }=+] \\
= & \operatorname{Pr}[A=1 \mid \text { class }=+] \cdot \operatorname{Pr}[B=2 \mid \text { class }=+] \cdot \operatorname{Pr}[C=0 \mid \text { class }=+] \cdot \operatorname{Pr}[\text { class }=+] \\
\text { (estimate) }= & \frac{3}{5} \cdot \frac{2}{5} \cdot \frac{1}{5} \cdot \frac{1}{2} \\
= & 6 / 250
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{Pr}[A=1, B=2, C=0 \mid \text { class }=-] \cdot \operatorname{Pr}[\text { class }=-] \\
= & \operatorname{Pr}[A=1 \mid \text { class }=-] \cdot \operatorname{Pr}[B=2 \mid \text { class }=-] \cdot \operatorname{Pr}[C=0 \mid \text { class }=-] \cdot \operatorname{Pr}[\text { class }=-] \\
\text { (estimate) }= & \frac{1}{5} \cdot \frac{1}{5} \cdot \frac{3}{5} \cdot \frac{1}{2} \\
= & 3 / 250
\end{aligned}
$$

We therefore conclude that $\operatorname{Pr}[$ class $=+\mid A=1, B=2, C=0]>\operatorname{Pr}[$ class $=-\mid A=1, B=$ $2, C=0]$.

Problem 4. Suppose that we make an alternative conditional independence assumptions: A and C are independent, conditioned on a class label and a value of B. Decide the larger probability between $\operatorname{Pr}[$ class $=+\mid A=1, B=2, C=0]$ and $\operatorname{Pr}[$ class $=-\mid A=1, B=2, C=0]$.

Answer. By Bayes Theorem

$$
\begin{aligned}
& \operatorname{Pr}[\text { class }=+\mid A=1, B=2, C=0] \\
= & \frac{\operatorname{Pr}[A=1, B=2, C=0 \mid \text { class }=+] \cdot \mathbf{P r}[\text { class }=+]}{\operatorname{Pr}[A=1, B=2, C=0]} \\
= & \frac{\operatorname{Pr}[A=1, C=0 \mid \text { class }=+, B=2] \cdot \operatorname{Pr}[B=2 \mid \text { class }=+] \cdot \operatorname{Pr}[\text { class }=+]}{\operatorname{Pr}[A=1, B=2, C=0]} \\
= & \frac{\operatorname{Pr}[A=1 \mid \text { class }=+, B=2] \cdot \operatorname{Pr}[C=0 \mid \text { class }=+, B=2] \cdot \operatorname{Pr}[B=2 \mid \text { class }=+] \cdot \mathbf{P r}[\text { class }=+]}{\operatorname{Pr}[A=1, B=2, C=0]}
\end{aligned}
$$

where the last step used the given conditional independence assumption. Likewise,

$$
\begin{aligned}
& \operatorname{Pr}[\text { class }=-\mid A=1, B=2, C=0] \\
= & \frac{\operatorname{Pr}[A=1 \mid \text { class }=-, B=2] \cdot \operatorname{Pr}[C=0 \mid \text { class }=-, B=2] \cdot \operatorname{Pr}[B=2 \mid \text { class }=-] \cdot \mathbf{P r}[\text { class }=-]}{\operatorname{Pr}[A=1, B=2, C=0]}
\end{aligned}
$$

Now we compare the numerators of the two fractions:

$$
\begin{aligned}
& \operatorname{Pr}[A=1 \mid \text { class }=+, B=2] \cdot \operatorname{Pr}[C=0 \mid \text { class }=+, B=2] . \\
& \operatorname{Pr}[B=2 \mid \text { class }=+] \cdot \operatorname{Pr}[\text { class }=+] \\
\text { (estimate) }= & \frac{1}{2} \cdot \gamma \cdot \frac{2}{5} \cdot \frac{1}{2}=\frac{\gamma}{10}
\end{aligned}
$$

where $\gamma>0$ is a very small value introduced to avoid probability 0 .

$$
\begin{aligned}
& \operatorname{Pr}[A=1 \mid \text { class }=-, B=2] \cdot \operatorname{Pr}[C=0 \mid \text { class }=-, B=2] . \\
& \operatorname{Pr}[B=2 \mid \text { class }=-] \cdot \operatorname{Pr}[\text { class }=-] \\
\text { (estimate) }= & \gamma \cdot \gamma \cdot \frac{1}{5} \cdot \frac{1}{2}=\frac{\gamma^{2}}{10}
\end{aligned}
$$

We thus conclude that $\operatorname{Pr}[$ class $=+\mid A=1, B=2, C=0]>\operatorname{Pr}[$ class $=-\mid A=1, B=2, C=0]$.
Problem 5*. Based on the following Bayesian network, decide the larger probability between $\operatorname{Pr}[$ class $=+\mid A=1, B=1, C=0]$ and $\operatorname{Pr}[$ class $=-\mid A=1, B=1, C=0]$.

Answer.

$$
\begin{aligned}
& \operatorname{Pr}[\text { class }=+\mid A=1, B=1, C=0] \\
= & \frac{\operatorname{Pr}[A=1, B=1, C=0 \mid \text { class }=+] \cdot \operatorname{Pr}[\text { class }=+]}{\operatorname{Pr}[A=1, B=1, C=0]} \\
= & \frac{\operatorname{Pr}[A=1 \mid B=1, C=0] \cdot \operatorname{Pr}[B=1 \mid \text { class }=+] \cdot \operatorname{Pr}[C=0 \mid \text { class }=+] \cdot \operatorname{Pr}[\text { class }=+]}{\operatorname{Pr}[A=1, B=1, C=0]}
\end{aligned}
$$

where the last step used the conditional independence assumptions implied by the Bayesian network. Likewise,

$$
\begin{aligned}
& \operatorname{Pr}[\text { class }=-\mid A=1, B=1, C=0] \\
= & \frac{\operatorname{Pr}[A=1 \mid B=1, C=0] \cdot \operatorname{Pr}[B=1 \mid \text { class }=-] \cdot \mathbf{P r}[C=0 \mid \text { class }=-] \cdot \operatorname{Pr}[\text { class }=-]}{\operatorname{Pr}[A=1, B=1, C=0]}
\end{aligned}
$$

It remains to compare the numerators of the two fractions:

$$
\begin{aligned}
& \operatorname{Pr}[A=1 \mid B=1, C=0] \cdot \operatorname{Pr}[B=1 \mid \text { class }=+] . \\
& \operatorname{Pr}[C=0 \mid \text { class }=+] \cdot \operatorname{Pr}[\text { class }=+] \\
\text { (estimate) }= & \frac{1}{3} \cdot \frac{2}{5} \cdot \frac{1}{5} \cdot \frac{1}{2}=\frac{1}{75} \\
& \operatorname{Pr}[A=1 \mid B=1, C=0] \cdot \operatorname{Pr}[B=1 \mid \text { class }=-] . \\
& \operatorname{Pr}[C=0 \mid \text { class }=-] \cdot \operatorname{Pr}[\text { class }=-] \\
\text { (estimate) }= & \frac{1}{3} \cdot \frac{2}{5} \cdot \frac{3}{5} \cdot \frac{1}{2}=\frac{1}{25}
\end{aligned}
$$

We thus conclude that $\operatorname{Pr}[$ class $=+\mid A=1, B=1, C=0]<\operatorname{Pr}[$ class $=-\mid A=1, B=1, C=0]$.

