
CMSC5724: Exercise List 12

Problem 1. In the following directed graph G, every node represents a webpage, and every edge
represents a hyperlink. Consider the “Google random surfing” model with parameter α = 1/2.
Recall that the model can be regarded as a random walk on a complete graph, where each edge is
attached a transition probability. Show this complete graph and give all the transition probabilities.
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Problem 2. Compute the exact page rank of every node in problem 1.

Solution. Let M be the matrix describing the random walk on the above graph G. We know from
the solution of Problem 1:

M =


0.125 0.125 0.125 0.125
0.375 0.125 0.125 0.125
0.375 0.375 0.125 0.125
0.125 0.375 0.625 0.625


It is guaranteed that M has an eigenvalue 1. (0.125, 0.1563, 0.1953, 0.5234)T is the eigenvector

of this eigenvalue satisfying the condition that all the components sum up to 1. Those components
are the page ranks of the vertices.
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Problem 3. Define ri as the page rank of vi in problem 2; and let P = (r1, r2, r3, r4)
T . Use the

power method to compute an approximate page rank for every node. Show all the steps of the
power method until Err(t) ≤ 0.01 (see the definition of Err(t) in our lecture notes).

Solution. Let p(v, t) be the approximate page rank of vertex v at t-th round.

Initially, t = 0. Set p(v1, 0) = 1, p(v2, 0) = p(v3, 0) = p(v4, 0) = 0. In each iteration, use the
equation of Slide 8 of our notes to calculate p(v, t) for all vertices v.

Iteration 1. We have

p(v1, 1) =
1− α

4
=

1− 1
2

4
=

1

8
= 0.125

p(v2, 1) =
1− α

4
+ α · p(v1, 0)

d+(v1)
=

1

8
+

1

2
· 1

2
= 0.375

p(v3, 1) =
1− α

4
+ α

(
p(v1, 0)

d+(v1)
+
p(v2, 0)

d+(v2)

)
=

1

8
+

1

2
· (1

2
+

0

2
) = 0.375

p(v4, 1) =
1− α

4
+ α

(
p(v2, 0)

d+(v2)
+
p(v3, 0)

d+(v3)
+
p(v4, 0)

d+(v4)

)
=

1

8
+

1

2
· (0

2
+

0

1
+

0

1
) = 0.125

Err(1) = |0.125− 0.125|+|0.1563− 0.375|+|0.1953− 0.375|+|0.5234− 0.125| ≈ 0.7969.

Iteration 2. Similarly, we get

p(v1, 2) =
1

8
= 0.125,

p(v2, 2) =
1

8
+

1

2
· 0.125

2
≈ 0.1563,

p(v3, 2) =
1

8
+

1

2
· (0.125

2
+

0.375

2
) = 0.25,

p(v4, 2) =
1

8
+

1

2
· (0.375

2
+

0.375

1
+

0.125

1
) ≈ 0.4688.

Err(2) = |0.125− 0.125|+|0.1563− 0.1563|+|0.1953− 0.25|+|0.5234− 0.4688| ≈ 0.1094.

Iteration 3.

p(v1, 3) =
1

8
= 0.125,

p(v2, 3) =
1

8
+

1

2
· 0.125

2
≈ 0.1563,

p(v3, 3) =
1

8
+

1

2
· (0.125

2
+

0.1563

2
) ≈ 0.1953,

p(v4, 3) =
1

8
+

1

2
· (0.1563

2
+

0.25

1
+

0.4688

1
) ≈ 0.5234.

Err(3) = |0.125− 0.125|+|0.1563− 0.1563|+|0.1953− 0.1953|+|0.5234− 0.5234| ≤ 0.01.

Problem 4. Consider a new definition similar to Err(t):

Err′(t) =
n

max
i=1

∣∣ri − P (vi, t)
∣∣
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where the meanings of ri and P (vi, t) are the same as in Slide 22 of the lecture notes. Prove that,
for any 0 < ε ≤ 1, the power method ensures Err′(t) ≤ ε after t = O(log 1

ε ) rounds.

Solution. In the lecture, we have proved

Err(t) ≤ α · Err(t− 1). (1)

Also:

Err(0) =
n∑
i=1

∣∣ri − P (vi, 0)
∣∣ ≤ n∑

i=1

(ri + P (vi, 0)) ≤
n∑
i=1

ri +
n∑
i=1

P (vi, 0) = 2. (2)

From (1) and (2), we know that Err(t) ≤ ε for all

t ≥ log 1
α

2

ε
;

note that log 1
α

2
ε = O(log 1

ε ).

Finally, since
Err′(t) ≤ Err(t)

holds for all t ≥ 0, we conclude the proof.
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