CMSC5724: Exercise List 11

Consider the mining of association rules on the transactions:

transaction id	items
1	A, B, E
2	A, B, D, E
3	B, C, D, E
4	B, D, E
5	A, B, D
6	B, E
7	A, E

Problem 1. What is the support of the itemset $\{B, D, E\}$?
Answer.
The support count is 3 because transactions 2, 3 and 4 contain the itemset.
Problem 2. What is the support and confidence of the association rule $B D \rightarrow E$?

Answer.

The support $B D \rightarrow E$ is the support of $\{B, D, E\}$ which is 3 . The confidence is

$$
\operatorname{conf}(B D \rightarrow E)=\frac{\text { support }(\{B, D, E\})}{\text { support }(\{B, D\})}=\frac{3}{4} .
$$

Problem 3. Consider the application of the Apriori algorithm to find all the frequent itemsets whose counts are at least 3 . Recall that the algorithm scans the transaction list a number of times, where the i-th scan generates the set F_{i} of all size- i frequent itemsets from a candidate set C_{i}. Show C_{i} and F_{i} for each possible i.

Answer.

For the first scan, the candidate set C_{1} contains all the singleton sets, i.e., C_{1} includes $\{A\},\{B\}$, $\{C\},\{D\}$ and $\{E\}$. After the scan, only $\{A\},\{B\},\{D\}$ and $\{E\}$ remain in F_{1}. In particular, $\{C\}$ is eliminated because its count 1 is smaller than 3.

From F_{1}, the algorithm generates:

$$
C_{2}=\{\{A, B\},\{A, D\},\{A, E\},\{B, D\},\{B, E\},\{D, E\}\}
$$

The second scan produces:

$$
F_{2}=\{\{A, B\},\{A, E\},\{B, D\},\{B, E\},\{D, E\}\}
$$

$\{A, D\}$ is removed because its count 2 is lower than 3 .
From F_{2}, the algorithm generates:

$$
C_{3}=\{\{A, B, E\},\{B, D, E\}\}
$$

as follows. For each pair of distinct itemsets $\left\{a_{1}, a_{2}\right\}$ and $\left\{b_{1}, b_{2}\right\}$ in F_{2}, the algorithm adds to C_{3} an itemset $\left\{a_{1}, a_{2}, b_{2}\right\}$ if and only if $a_{1}=b_{1}$. Hence, $\{A, B\}$ and $\{A, E\}$ give rise to $\{A, B, E\}$, whereas $\{B, D\}$ and $\{B, E\}$ give rise to $\{B, D, E\}$.

Finally, the third scan produces:

$$
F_{3}=\{\{B, D, E\}\}
$$

as you can verify easily by yourself. The algorithm terminates here.
Problem 4. Find all the association rules with support at least 3 and confidence at least 3/4. For your convenience, all the itemsets with support at least 3 are $\{\{A\},\{B\},\{D\},\{E\}$, $\{A, B\},\{A, E\},\{B, D\},\{B, E\},\{D, E\},\{B, D, E\}\}$.

Answer.

The following table lists all the possible association rules and their confidence values. The ones in bold are the final answers.

rule	confidence
$\boldsymbol{A} \rightarrow \boldsymbol{B}$	$3 / 4$
$B \rightarrow A$	$1 / 2$
$\boldsymbol{A} \rightarrow \boldsymbol{E}$	$3 / 4$
$E \rightarrow A$	$1 / 2$
$B \rightarrow D$	$2 / 3$
$\boldsymbol{D} \rightarrow \boldsymbol{B}$	1
$\boldsymbol{B} \rightarrow \boldsymbol{E}$	$5 / 6$
$\boldsymbol{E} \rightarrow \boldsymbol{B}$	$5 / 6$
$\boldsymbol{D} \rightarrow \boldsymbol{E}$	$3 / 4$
$E \rightarrow D$	$1 / 2$
$B \rightarrow D E$	$1 / 2$
$\boldsymbol{B} \boldsymbol{D} \rightarrow \boldsymbol{E}$	$3 / 4$
$B E \rightarrow D$	$3 / 5$
$\boldsymbol{D} \rightarrow \boldsymbol{B} \boldsymbol{E}$	$3 / 4$
$\boldsymbol{D} \boldsymbol{E} \rightarrow \boldsymbol{B}$	1
$E \rightarrow B D$	$1 / 2$

Problem 5. If the universe U (the set of all possible items) has size n, prove:

- the maximum number of distinct association rules is $\sum_{a=1}^{n-1} \sum_{b=1}^{n-a}\binom{n}{a}\binom{n-a}{b}$.
- $\sum_{a=1}^{n-1} \sum_{b=1}^{n-a}\binom{n}{a}\binom{n-a}{b}=\sum_{\ell=2}^{n}\binom{n}{\ell}\left(2^{\ell}-2\right)$.

Answer. An association rule has the form $I_{1} \rightarrow I_{2}$ where I_{1} and I_{2} are disjoint non-empty subsets of U. Subject to the constraint $\left|I_{1}\right|=a$ and $\left|I_{2}\right|=b$ where a and b are integers satisfying $a \geq 1$, $b \geq 1$, and $a+b \leq n$, we have $\binom{n}{a}$ ways to choose I_{1} and then $\binom{n-a}{b}$ ways to choose I_{2}. Therefore, the total number of possible rules is

$$
\sum_{a=1}^{n-1} \sum_{b=1}^{n-a}\binom{n}{a}\binom{n-a}{b}
$$

To prove the second bullet, let us analyze the maximum number of rules in a different way. For each $\ell \in[2, n]$, there are $\binom{n}{\ell}$ itemsets I of size ℓ. Given such an I, there are $2^{\ell}-2$ subsets $I_{1} \subseteq I$ satisfying $1 \leq\left|I_{1}\right| \leq \ell-1$. Every such I_{1} defines an association rule $I_{1} \rightarrow I_{2}$ where $I_{2}=I \backslash I_{1}$. No two association rules thus obtained are the same. Therefore, the total number of possible rules is

$$
\sum_{\ell=2}^{n}\binom{n}{\ell}\left(2^{\ell}-2\right)
$$

