Linear Classification: Perceptron

Yufei Tao

Department of Computer Science and Engineering
Chinese University of Hong Kong
Today, we start a series of lectures devoted to **linear classification**, which harbors a deep theory and is one of the most important topics in machine learning.
Let \(A_1, \ldots, A_d \) be \(d \) attributes, each with a domain \(\mathbb{R} \), i.e., \(\text{dom}(A_i) = \mathbb{R}^d \) for each \(i \in [1, d] \).

Instance space: \(\mathcal{X} = \text{dom}(A_1) \times \text{dom}(A_2) \times \ldots \times \text{dom}(A_d) = \mathbb{R}^d \).

Label space: \(\mathcal{Y} = \{-1, 1\} \) (where \(-1\) and \(1\) are class labels).

Instance-label pair (a.k.a. object): a pair \((x, y)\) in \(\mathcal{X} \times \mathcal{Y} \).

- \(x \) is a \(d \)-dimensional vector. Since every dimension has a real domain, we can regard \(x \) as a \(d \)-dimensional point.

- We use \(x[i] \) to represent the \(i \)-th coordinate of point \(x \).
Linear Classification

Linear classifier: A function $h : \mathcal{X} \rightarrow \mathcal{Y}$ where h is defined by a d-dimensional **weight vector** w such that

- $h(x) = 1$ if $x \cdot w \geq 0$ (note: “\cdot” represents dot product);
- $h(x) = -1$ otherwise.

Suppose that Alice chooses a linear classifier h^* and a distribution \mathcal{D} over \mathcal{X} (note: \mathcal{D} is defined in the instance space, not the instance-label space).

For any linear classifier h, its **error on** \mathcal{D} is defined as:

$$\text{err}_\mathcal{D}(h) = \Pr_{x \sim \mathcal{D}}[h(x) \neq h^*(x)].$$

Note that the error of h^* on \mathcal{D} is 0.
Linear Classification

Alice provides a training set S which contains objects (x, y) obtained as follows:

- First, draw x independently from \mathcal{X}.
- Then, set $y = h^*(x)$.

The goal of linear classification is to learn a classifier h from S whose error on \mathcal{D} is as low as possible.
Claim: S is linearly separable, i.e., there is a d-dimensional vector w such that for each $p \in S$:

- $w \cdot p > 0$ if p has label 1;
- $w \cdot p < 0$ if p has label -1.

The plane $w \cdot x = 0$ is a separation plane of S.

Proof (sketch): Denote by w^* the weight vector of the classifier h^* chosen by Alice. By the way S is generated, we know that $w^* \cdot p \geq 0$ if p has label 1, and $w^* \cdot p < 0$ otherwise. We can obtain the desired w by adjusting w^* infinitesimally.
Example:

```
Linearly separable       Linearly non-separable
```

- Origin
In this lecture, we will study the following problem:

Problem (Finding a Separation Plane): Given a linearly separable set S, find a separation plane.

The separation plane gives a linear classifier h with $err_S(h) = 0$, i.e., empirical error 0.

We will solve the problem with a surprisingly simple algorithm called perceptron.
Perceptron

The algorithm starts with \(\mathbf{w} = (0, 0, \ldots, 0) \) and, then, runs in iterations. In each iteration, it looks for a violation point \(p \in S \):

- If \(p \) has label 1, \(p \) is a violation point if \(\mathbf{w} \cdot p \leq 0 \);
- If \(p \) has label \(-1\), \(p \) is a violation point if \(\mathbf{w} \cdot p \geq 0 \);

If \(p \) exists, the algorithm adjusts \(\mathbf{w} \) as follows:

- If \(p \) has label 1, then \(\mathbf{w} \leftarrow \mathbf{w} + p \).
- If \(p \) has label \(-1\), then \(\mathbf{w} \leftarrow \mathbf{w} - p \).

The algorithm finishes when there are no more violation points.
Example: Suppose that S has points: $p_1 = (1, 0)$, $p_2 = (0, -1)$, $p_3 = (0, 1)$, and $p_4 = (-1, 0)$. Points p_1 and p_3 have label 1, and the other have label -1.

The algorithm starts with $w = (0, 0, \ldots, 0)$.

- Iteration 1: p_1 is a violation point because it has label 1 but $p_1 \cdot w = 0$. Hence, we update w to $w + p_1 = (1, 0)$.

- Iteration 2: p_2 is a violation point because it has label -1 but $p_2 \cdot w = 0$. Hence, we update w to $w - p_2 = (1, 0) - (0, -1) = (1, 1)$.

- Iteration 3: No more violation points. The algorithm finishes with $w = (1, 1)$.

We now analyze the number of iterations performed by Perceptron.

Given a vector \(\mathbf{v} = (v_1, \ldots, v_d) \), we define its length as

\[
|\mathbf{v}| = \sqrt{\mathbf{v} \cdot \mathbf{v}} = \sqrt{\sum_{i=1}^{d} v[i]^2}.
\]

For any vectors \(\mathbf{v}_1, \mathbf{v}_2 \), it holds that

\[
\mathbf{v}_1 \cdot \mathbf{v}_2 \leq |\mathbf{v}_1||\mathbf{v}_2|.
\]

Define:

\[
R = \max_{\mathbf{p} \in S} \{|\mathbf{p}|\}.
\]

In other words, all the points of \(S \) fall in a ball that centers at the origin and has radius \(R \).
Given a separation plane π, define its **margin** as the smallest distance from the points of S to π.

Example:

Denote by γ the **largest** margin of all the separation planes. Let π^* be the origin-passing plane with margin γ; the plane has a **unit normal vector** u^* such that

- for every $p \in S$ with label 1, $u^* \cdot p > 0$;
- for every $p \in S$ with label -1, $u^* \cdot p < 0$.

We have:

$$\gamma = \min_{p \in S} |u^* \cdot p|.$$
Theorem: Perceptron terminates after at most \((R/\gamma)^2\) adjustments of \(w\).

Proof: Let \(w_i\) \((i \geq 1)\) be the value of \(w\) after the \(i\)-th adjustment. As a special case, define \(w_0 = (0, ..., 0)\). Denote by \(k\) the total number of violations.
We first show that $\mathbf{w}_{i+1} \cdot \mathbf{u}^* \geq \mathbf{w}_i \cdot \mathbf{u}^* + \gamma$ for any $i \geq 0$. Consider the violation point \mathbf{p} used to change \mathbf{w} from \mathbf{w}_i to \mathbf{w}_{i+1}:

- **Case 1:** \mathbf{p} has label 1. Thus, $\mathbf{p} \cdot \mathbf{w}_i < 0$ and $\mathbf{w}_{i+1} = \mathbf{w}_i + \mathbf{p}$. Hence, $\mathbf{w}_{i+1} \cdot \mathbf{u}^* = \mathbf{w}_i \cdot \mathbf{u}^* + \mathbf{p} \cdot \mathbf{u}^*$. From the definition of γ, we know that $\mathbf{p} \cdot \mathbf{u}^* \geq \gamma$. This gives $\mathbf{w}_{i+1} \cdot \mathbf{u}^* \geq \mathbf{w}_i \cdot \mathbf{u}^* + \gamma$.

- **Case 2:** \mathbf{p} has label -1. The proof is similar and left to you.

Therefore:

\[
\mathbf{w}_k \cdot \mathbf{u}^* \geq \mathbf{w}_{k-1} \cdot \mathbf{u}^* + \gamma \\
\geq \mathbf{w}_{k-2} \cdot \mathbf{u}^* + 2\gamma \\
\vdots \\
\geq \mathbf{w}_0 \cdot \mathbf{u}^* + k\gamma \\
= k\gamma.
\] (1)
Next, we show that $|\mathbf{w}_{i+1}|^2 \leq |\mathbf{w}_i|^2 + R^2$ for any $i \geq 0$. Consider the violation point \mathbf{p} used to change \mathbf{w} from \mathbf{w}_i to \mathbf{w}_{i+1}:

- **Case 1:** \mathbf{p} has label 1. Thus, $\mathbf{p} \cdot \mathbf{w}_i < 0$ and $\mathbf{w}_{i+1} = \mathbf{w}_i + \mathbf{p}$. Hence:

$$
|\mathbf{w}_{i+1}|^2 = \mathbf{w}_{i+1} \cdot \mathbf{w}_{i+1} = (\mathbf{w}_i + \mathbf{p}) \cdot (\mathbf{w}_i + \mathbf{p})
= \mathbf{w}_i \cdot \mathbf{w}_i + 2\mathbf{w}_i \cdot \mathbf{p} + |\mathbf{p}|^2
\quad \text{(by def. of } R) \leq |\mathbf{w}_i|^2 + 2\mathbf{w}_i \cdot \mathbf{p} + R^2
\leq |\mathbf{w}_i|^2 + R^2
$$

where the last step used the fact that $\mathbf{p} \cdot \mathbf{w}_i < 0$.

- **Case 2:** \mathbf{p} has label -1. The proof is similar and left to you.

Therefore:

$$
|\mathbf{w}_k|^2 \leq |\mathbf{w}_{k-1}|^2 + R^2 \leq |\mathbf{w}_{k-2}|^2 + 2R^2 \ldots \leq |\mathbf{w}_0|^2 + kR^2 = kR^2. \quad (2)
$$
From (1), we know:

$$|w_k| = |w_k||u^*| \geq w_k \cdot u^* \geq k\gamma.$$

Therefore, $|w_k|^2 \geq k^2\gamma^2$. Comparing this to (2) gives:

$$kR^2 \geq k^2\gamma^2 \Rightarrow k \leq \frac{R^2}{\gamma^2}$$
We have learned how to obtain a linear classifier h with 0 empirical error on S. Does h have a small generalization error $err_D(h)$? The answer is yes, but this does not follow from the generalization theorem we currently have (think: why not?). In the next lecture, we will discuss a more powerful generalization theorem that will allow us to bound $err_D(h)$.