More Generalization Theorems

Yufei Tao

Department of Computer Science and Engineering
Chinese University of Hong Kong
Classification

Let \(A_1, \ldots, A_d \) be \(d \) attributes, where \(A_i \ (i \in [1, d]) \) has domain \(\text{dom}(A_i) = \mathbb{R} \).

Instance space \(\mathcal{X} = \text{dom}(A_1) \times \text{dom}(A_2) \times \ldots \times \text{dom}(A_d) = \mathbb{R}^d \).

Label space \(\mathcal{Y} = \{-1, 1\} \).

Each instance-label pair (a.k.a. object) is a pair \((x, y)\) in \(\mathcal{X} \times \mathcal{Y} \).

- \(x \) is a vector; we use \(x[A_i] \) to represent the vector's value on \(A_i \) \((1 \leq i \leq d)\).

Denote by \(\mathcal{D} \) a probabilistic distribution over \(\mathcal{X} \times \mathcal{Y} \).
Goal: Given an object \((x, y)\) drawn from \(\mathcal{D}\), we want to predict its label \(y\) from its attribute values \(x[A_1],...,x[A_d]\).

A **classifier** is a function

\[h : \mathcal{X} \to \mathcal{Y}. \]

Denote by \(\mathcal{H}\) a collection of classifiers.

The **error of \(h\) on \(\mathcal{D}\)** (i.e., generalization error) is defined as:

\[\text{err}_{\mathcal{D}}(h) = \Pr_{(x,y) \sim \mathcal{D}}[h(x) \neq y]. \]

We want to learn a classifier \(h \in \mathcal{H}\) with small \(\text{err}_{\mathcal{D}}(h)\) from a **training set** \(S\) where each object is drawn independently from \(\mathcal{D}\).
We want to learn a classifier \(h \in \mathcal{H} \) with small \(\text{err}_D(h) \) from a training set \(S \) where each object is drawn independently from \(D \).

The error of \(h \) on \(S \) (i.e., empirical error) is defined as:

\[
\text{err}_S(h) = \frac{|(x, y) \in S \mid h(x) \neq y|}{|S|}.
\]
Let P be a set of points in \mathbb{R}^d. Given a classifier $h \in \mathcal{H}$, we define:

$$P_h = \{ p \in P \mid h(p) = 1 \}$$

namely, the set of points in P that h classifies as 1.

\mathcal{H} shatters P if, for any subset $P' \subseteq P$, there exists a classifier $h \in \mathcal{H}$ satisfying $P' = P_h$.
Example: An extended linear classifier h is described by a d-dimensional weight vector w and a threshold τ. Given an instance $x \in \mathbb{R}^d$, $h(x) = 1$ if $w \cdot x \geq \tau$, or -1 otherwise. Let \mathcal{H} be the set of all extended linear classifiers.

In 2D space, \mathcal{H} shatters the set P of points shown below.
Example (cont.): Can you find 4 points in \mathbb{R}^2 that can be shattered by \mathcal{H}?

The answer is no. Can you prove this?
Let \(P \) be a subset of \(\mathcal{X} \). The **VC-dimension** of \(\mathcal{H} \) on \(P \) is the size of the largest subset \(P \subseteq \mathcal{P} \) that can be shattered by \(\mathcal{H} \).

If the VC-dimension is \(\lambda \), we write \(\text{VC-dim}(\mathcal{P}, \mathcal{H}) = \lambda \).
Theorem: Let \mathcal{H} be the set of extended linear classifiers. $\text{VC-dim}(\mathbb{R}^d, \mathcal{H}) = d + 1$.

The proof is outside the syllabus.

Example: We have seen earlier that when $d = 2$, \mathcal{H} can shatter at least one set of 3 points but cannot shatter any set of 4 points. Hence, $\text{VC-dim}(\mathbb{R}^2, \mathcal{H}) = 3$.

Think: Now consider \mathcal{H} as the set of linear classifiers (where the threshold τ is fixed to 0). What can you say about $\text{VC-dim}(\mathbb{R}^d, \mathcal{H})$?
VC-Based Generalization Theorem

The support set of \mathcal{D} is the set of points in \mathbb{R}^d that have a positive probability to be drawn according to \mathcal{D}.

Theorem: Let \mathcal{P} be the support set of \mathcal{D} and set $\lambda = \text{VC-dim}(\mathcal{P}, \mathcal{H})$. Fix a value δ satisfying $0 < \delta \leq 1$. It holds with probability at least $1 - \delta$ that

$$
err_D(h) \leq err_S(h) + \sqrt{\frac{8 \ln \frac{4}{\delta} + 8 \lambda \cdot \ln \frac{2e|S|}{\lambda}}{|S|}}.
$$

for every $h \in \mathcal{H}$, where S is the set of training points.

The proof is outside the syllabus.
The new generalization theorem places no constraints on the size of \mathcal{H}.

Think: What implications can you draw about the Perceptron algorithm?
If a set \mathcal{H} of classifiers is “more powerful” — namely, having a greater VC dimension — it is more difficult to learn because a larger training set is needed.

For the set \mathcal{H} of (extended) linear classifiers, the training set size needs to be $\Omega(d)$ to ensure a small generalization error. This becomes a problem when d is large. In fact, in some situations we may even want to work with $d = \infty$.

Next, we will introduce another generalization theorem for the linear classification problem.
Recall:

Linear classifier: A function $h : \mathcal{X} \to \mathcal{Y}$ where h is defined by a d-dimensional **weight vector** w such that

- $h(x) = 1$ if $x \cdot w \geq 0$;
- $h(x) = -1$ otherwise.

S is **linearly separable** if there is a d-dimensional vector w such that for each $p \in S$:

- $w \cdot p > 0$ if p has label 1;
- $w \cdot p < 0$ if p has label -1.

The linear classifier that w defines is said to **separate** S.
Let h be a linear classifier defined by a d-dimensional vector w. We say that h is **canonical** if for every point $p \in S$:

- $w \cdot p \geq 1$ if p has label 1
- $w \cdot p \leq -1$ if p has label -1;

and the equality holds on **at least one point** in S.

Think: If h separates S, it always has a canonical form. Why?
Theorem: Let \mathcal{H} be the set of linear classifiers. Suppose that the training set S is linearly separable. Fix a value δ satisfying $0 < \delta \leq 1$. It holds with probability at least $1 - \delta$ that,

$$\text{err}_D(h) \leq \frac{4R \cdot |w|}{\sqrt{|S|}} + \sqrt{\ln \frac{2}{\delta} + \ln \lceil \log_2 (R |w|) \rceil} \cdot \frac{1}{|S|},$$

for every canonical $h \in \mathcal{H}$, where w is the d-dimensional vector defining h and

$$R = \max_{p \in S} |p|.$$
Margin-Based Generalization Theorem

Why is the theorem “margin-based”? The margin of the separation plane defined by \(w \) equals \(\frac{1}{|w|} \) -(we will derive this later in the course).

When the training set \(S \) is linearly separable, we should find a separation plane with the largest margin.