Problem 1. A rectangular classifier M in \mathbb{R}^2 is specified by an axis-parallel rectangle $r = [x_1, x_2] \times [y_1, y_2]$. Given a point $p \in \mathbb{R}^2$, $M(p)$ equals 1 if p is covered by r, or -1 otherwise. Give a set of 4 points \mathbb{R}^2 that can be shattered by M.

Problem 2. A rectangular classifier M in \mathbb{R}^2 is specified by an axis-parallel rectangle $r = [x_1, x_2] \times [y_1, y_2]$. Given a point $p \in \mathbb{R}^2$, $M(p)$ equals 1 if p is covered by r, or -1 otherwise. Prove: there does not exist any set of 5 points in \mathbb{R}^2 that can be shattered by M.

Problem 3. Let P be a set of points in \mathbb{R}^d, and R the maximum distance from the origin to a point in P. Construct an alternative dataset P' as follows: for each point $p \in P$, add to P' a point p' satisfying $p'[i] = p[i]/R$ for each $i \in [1, d]$. Prove:

- The maximum distance from the origin to a point in P' is 1.
- If there exists a canonical linear classifier M on P that has margin γ, there exists a canonical linear classifier M' on P' that has margin γ/R.

Problem 4*. In this problem, we will see that deciding whether a set of points is linearly separable can be cast as an instance of linear programming.

In the linear programming (LP) problem, we are given n constraints, each of which has the form:

$$\alpha_i \cdot \vec{x} \geq 0$$

where i ranges from 1 to n, α_i is a constant d-dimensional vector (i.e., α_i is explicitly given), and \vec{x} is a d-dimensional vector we search for. Let $\vec{\beta}$ be another constant d-dimensional vector. Let S be the set of vectors \vec{x} that satisfy all the n constraints. The objective is to

- either find the best \vec{x} in S that maximizes the objective function $\vec{\beta} \cdot \vec{x}$ — in this case we say that the LP instance is feasible;
- or declare that S is empty — in this case we say that the instance is infeasible.

Suppose that we have an algorithm A for solving the LP problem in at most $f(n, d)$ time. Let P be a set of n points in \mathbb{R}^d, each of which is associated with a label that is either 1 or -1. Explain how to use A to decide in $O(nd) + f(n + 1, d + 1)$ time whether P is linearly separable, i.e., whether there exists a vector \vec{c} such that:

- For each label-1 point $p \in P$, it holds that $\vec{c} \cdot \vec{p} > 0$;
- For each label-(-1) point $p \in P$, it holds that $\vec{c} \cdot \vec{p} < 0$.

Note: The inequalities in the above two bullets are strict, while the inequality in each constraint of LP involves equality.