Link Analysis: Page Ranks

Yufei Tao

Department of Computer Science and Engineering
Chinese University of Hong Kong
The topic of today’s lecture is link analysis, whose goal in general is to extract useful information from a graph. Specifically, we will discuss a form of link analysis called page rank computation, which aims to give each vertex a real-valued rank, corresponding to its “importance” (this is what inspired Google at the beginning). We will also discuss random walk, which is a stochastic process underlying the formulation of page ranks.
Let us model WWW as a directed graph $G = (V, E)$. Each webpage is represented as a node in V. Given two nodes (a.k.a. webpages) $v_1, v_2 \in V$, there is a link from v_1 to v_2 in E if there is a hyperlink in webpage v_1 to webpage v_2.
Let us imagine the following process that mimics the behavior of a user surfing randomly in WWW:

1. Let u be the webpage that the user is currently at.

2. With probability α:

 2.1 If there is at least one out-going link

 2.2 Click on a random hyperlink in u

 2.3 Set u to the new webpage that opens up.

 2.4 Repeat from Step 1.

3. With probability $1 - \alpha$:

 3.1 Set u to a random webpage in WWW—we will refer to this as re-seeding.

 3.2 Repeat from Step 1.

We refer to the above process as Google’s random surfing.
Definition 1 (Page Rank).

The authority (a.k.a. page rank) of a webpage equals the probability that it is the t-th webpage visited by the user when t tends to ∞.

- α is often set to 0.85 in practice.
- You are probably wondering how come the page-rank definition says nothing on the first page of the user. It turns out that it does not matter. The page rank of a page remains the same (when $t \to \infty$) regardless of which is the first page visited.
Example 2.

Assume that the first webpage chosen by the user is v_1. Let us analyze the probability that the second page is v_3. For this to happen, one of the following disjoint events must take place:

- Re-seeding happens in choosing the first webpage, and picks v_3. The probability for this is $0.15 \cdot (1/5) = 0.03$.

- Re-seeding does not happen, and the user follows the link from v_1 to v_3. The probability for this is $0.85 \cdot (1/2) = 0.425$.

Hence, the probability for v_3 to be the second webpage is $0.03 + 0.425 = 0.455$.
Continuing the previous example, we analyze the probability that the third webpage is v_4. For this to happen, one of the following disjoint events must take place:

- Re-seeding happens in choosing the second page, and picks v_4. The probability for this is $0.15 \cdot \frac{1}{5} = 0.03$.

- v_3 is at the second page, re-seeding does not happen, and the user follows the link from v_3 to v_4. The probability for this is $0.455 \cdot 0.85 \cdot \frac{1}{2} = 0.193$.

Hence, the probability for v_4 to be the third webpage is $0.03 + 0.193 = 0.223$.

Y Tao
Link Analysis: Page Ranks
Given a vertex $v \in V$, let $p(v, t)$ be the probability that v is the t-th webpage visited. Then, we have the following recurrence from the above discussion:

$$p(v, t + 1) = \frac{1 - \alpha}{|V|} + \alpha \cdot \sum_{u \in in(v)} \frac{p(u, t)}{outdeg(u)}$$

where

- $in(v)$ is the set of in-neighbors of v (i.e., nodes with links pointing to v).
- $outdeg(v)$ is the out-degree of v (i.e., the number of out-going links of v).

Remark: If a webpage does not contain any out-going links, conceptually give it an out-going link pointing to itself.
It is guaranteed that, when $t \to \infty$:

$$p(v, t + 1) = p(v, t)$$

holds for all $v \in V$. The value of $p(v, t)$ at that moment is the page rank of v.

Example 4.

Example: The page ranks of v_1, \ldots, v_5 are 0.1716, 0.1666, 0.3214, 0.1666, and 0.1737, respectively.
The following algorithm—called the power method—computes the page ranks of all vertices:

1. Let \(v \) be an arbitrary node in \(V \). Set \(p(v, 1) = 1 \), and \(p(u, 1) = 0 \) for all vertices \(u \neq v \).
2. \(t = 1 \).
3. Use the equation of Slide 8 to calculate \(p(v, t + 1) \) for all \(v \in V \).
4. If \(p(v, t) = p(v, t + 1) \) for all \(v \in V \), terminate the algorithm.
5. Otherwise, \(t \leftarrow t + 1 \), and repeat from Step 3.

In practice, Step 4 is usually replaced by “if \(t \) is large enough (e.g., \(t = 100 \)), terminate the algorithm”.
Next, we will discuss how page ranks relate to the well-established theory of random walks. In particular, we will see that page ranks form an eigenvector of a matrix that depends only on the WWW graph G and α.
Definition 5 (Stochastic Matrix).

An $n \times n$ matrix M is called a **stochastic matrix** if all the following hold:

- Every value in M is non-negative.
- The values of every row sum up to 1.

From now on, define $M[i, j]$ as the value at the i-th row, and the j-th column of M.
Every stochastic matrix M defines a “random walk” process, formally known as a random walk.

- Consider that we have a directed graph G_{markov} of n nodes: $v_1, ..., v_n$. For every non-zero entry $M[i, j]$ of M ($1 \leq i, j \leq n$), G_{markov} has an edge from v_i to v_j (note: j can be i, namely, there can be self-loop edges).

- At the beginning of the random walk, you stand at any vertex of your choice—this is your first stop.

- Then, inductively, assuming you are at a node v_i at the t-th stop ($t \geq 1$), you move to a neighbor v_j with probability $M[i, j]$. The new node you are standing at now is the $(t + 1)$-th stop.

Remark: The above stochastic process is also called a Markov chain.
Definition 6 (Irreducibility).

The random walk on the previous slide is irreducible if, for all \(1 \leq i, j \leq n\), there is a path from \(v_i\) to \(v_j\) in \(G_{\text{markov}}\).

Definition 7 (Aperiodicity).

The random walk on the previous slide is aperiodic if the following statement is true regardless of the first stop: every vertex in \(G_{\text{markov}}\) has a non-zero probability of being visited at every step \(t \geq t_0\) for some finite value \(t_0\).
Definition 8 (Probability Vector).

An $n \times 1$ vector P is a probability vector if both the following are true:

- Each component in P is a value between 0 and 1.
- All components of P sum up to 1.
Theorem 9.

Let M be a stochastic matrix describing an irreducible and aperiodic random walk. Let M^T be the transpose of M. Then, there is a unique probability vector P satisfying $P = M^T P$.

The proof is non-trivial and omitted.
The process of Google’s random surfing can be regarded as a random walk. Specifically, assume that WWW has n webpages $v_1, ..., v_n$. If you are currently at webpage v_i, then you jump to webpage v_j as the next stop with probability:

- $\frac{1-\alpha}{n}$, if v_i does not have a hyperlink to v_j.
- $\frac{1-\alpha}{n} + \frac{\alpha}{\text{outdeg}(v_i)}$, if v_i has $\text{outdeg}(v_i)$ hyperlinks, one of which points to v_j.

You can view the above process as a random walk on a graph G_{markov}, where each v_i corresponds to a webpage, and there is a link from every v_i to every v_j (even for $i = j$). Let M be the matrix for this random walk. Then, $M[i,j]$ is set as the probability of jumping from v_i to v_j as discussed above.

Think

Verify by yourself that M describes an irreducible and aperiodic random walk.
As before, let \(p(v_i, t) \) \((1 \leq i \leq n)\) be the probability that webpage \(v_i \) is the \(t \)-th one visited by the random surfer. Let \(P(t) \) be an \(n \times 1 \) vector such that:

\[
P(t) = (p(v_1, t), p(v_2, t), ..., p(v_n, t))^T
\]

where the superscript \(T \) stands for “transpose”.

From Slide 8, we know:

\[
P(t + 1) = M^T \cdot P(t).
\]
When $P(t + 1) = P(t)$, the values in $P(t)$ give the page ranks of the vertices $v_1, ..., v_n$. At this moment, $P(t)$ is the solution of P from the following equation:

$$P = M^T \cdot P.$$

Namely, P (which is a probabilistic vector) is an eigenvector of M of eigenvalue 1. By the theorem in Slide 16, P exists and is unique.

Remark: For this reason, P is commonly referred to as the **stationary probability vector** of the random walk described by M.
Example 10.

The matrix describing the random walk is:

\[
M = \begin{bmatrix}
0.03 & 0.03 & 0.455 & 0.03 & 0.455 \\
0.455 & 0.03 & 0.455 & 0.03 & 0.03 \\
0.03 & 0.455 & 0.03 & 0.455 & 0.03 \\
0.455 & 0.03 & 0.03 & 0.03 & 0.455 \\
0.03 & 0.03 & 0.88 & 0.03 & 0.03
\end{bmatrix}
\]

You can verify that \(P = (0.1716, 0.1666, 0.3214, 0.1666, 0.1737)^T \) is an eigenvector of \(M^T \) with eigenvalue 1. It is the stationary probability vector of the random walk described by \(M \).
With everything said, we can now re-state the power method in a concise manner:

1. Set $P(1) \leftarrow (1, 0, \ldots, 0)^T$, and $t \leftarrow 1$.
2. Compute
 $$P(t + 1) = M^T \cdot P(t).$$
3. $t \leftarrow t + 1$.
4. Repeat from Step 2.
Theorem 11 (The Convergence Theorem).

In the power method, \(\lim_{t \to \infty} P(t) = P \).

We will prove the theorem in the next few slides.
Proof of the Convergence Theorem

Recall that $P(t) = (p(v_1, t), ..., p(v_n, t))^T$. Define r_i ($1 \leq i \leq n$) as the page rank of v_i, namely, $P = (r_1, r_2, ..., r_n)^T$.

$$Err(t) = \sum_{i=1}^{n} \left| p(v_i, t) - r_i \right|.$$ \hspace{1cm} (1)

We will prove that $Err(t) \leq \alpha \cdot Err(t - 1)$. This implies that $Err(t) \leq \alpha^t \cdot Err(0)$, which tends to 0 as t goes to infinity. This will prove our claim.
Proof of the Convergence Theorem

By definition of stationary vector, we know that for each $i \in [1, n]$,

$$r_i = \frac{1 - \alpha}{n} + \alpha \cdot \sum_{\text{in-neighbor } v_j \text{ of } v_i} \frac{r_j}{\text{outdeg}(v_j)}.$$

By how the power method runs, we know:

$$p(v_i, t) = \frac{1 - \alpha}{n} + \alpha \cdot \sum_{\text{in-neighbor } v_j \text{ of } v_i} \frac{p(v_j, t-1)}{\text{outdeg}(v_j)}.$$

Therefore:

$$|p(v_i, t) - r_i| = \alpha \cdot \sum_{\text{in-neighbor } v_j \text{ of } v_i} \frac{|p(v_j, t-1) - r_j|}{\text{outdeg}(v_j)}. \quad (2)$$
Proof of the Convergence Theorem

By combining (1) and (2), we have:

\[Err(t) = \alpha \cdot \sum_{v_i} \sum_{\text{in-neighbor } v_j \text{ of } v_i} \left| \frac{p(v_j, t - 1) - r_i}{\text{outdeg}(v_j)} \right| \]

Observe that \(\left| \frac{p(v_j, t - 1) - r_i}{\text{outdeg}(v_j)} \right| \) is added exactly \(\text{outdeg}(v_j) \) times, once for every out-neighbor of \(v_j \). Therefore, we conclude:

\[Err(t) = \alpha \cdot \sum_{v_i} |p(v_i, t - 1) - r_i| = \alpha \cdot Err(t - 1) \]

completing the proof.
As a final remark, our proof suggests that $Err(t) \leq \epsilon$ after only $t = O(\log 1/\epsilon)$ rounds.