Proof of the Natural Join Expression

Let T_1 and T_2 be tables whose schemas are T_1 and T_2, respectively. Let $A_1, ..., A_d$ be their common attributes. Prove:

$$T_1 \bowtie T_2 = \Pi_S(\sigma_P(T_1 \times T_2))$$

where $S = (S_1 - S_2) \cup \{T_1.A_1, ..., T_1.A_d\} \cup (S_2 - S_1)$ and $P = (T_1.A_1 = T_2.A_1 \land ... \land T_1.A_d = T_2.A_d)$.

Proof. Let M_1 be the set of tuples that should appear in $T_1 \bowtie T_2$ by the definition of natural join:

$T_1 \bowtie T_2$ contains all and only tuples t such that $t[T_1] \in T_1$ and $t[T_2] \in T_2$, where $t[T_1]$ ($t[T_2]$) is a tuple obtained from t by keeping only its attributes in T_1 (T_2).

Let M_2 be the set of tuples retrieved by $\Pi_S(\sigma_P(T_1 \times T_2))$. We will prove $M_1 \subseteq M_2$ and $M_2 \subseteq M_1$, which will establish the fact that $M_1 = M_2$.

Proof of $M_1 \subseteq M_2$. Consider any tuple $t \in T_1 \bowtie T_2$. We will show that $t \in \Pi_S(\sigma_P(T_1 \times T_2))$. For this purpose, let $t_1 = t[T_1]$ and $t_2 = t[T_2]$. By the definition of natural join, we know that $t_1 \in T_1$ and $t_2 \in T_2$. Hence:

$$(t_1, t_2) \in T_1 \times T_2$$

where (t_1, t_2) is the tuple obtained by concatenating t_1 and t_2. Since $t_1.A_i = t_2.A_i$ for each $i \in [1, d]$, we know

$$(t_1, t_2) \in \sigma_P(T_1 \times T_2).$$

Finally, as t is obtained from (t_1, t_2) by discarding $t_2.A_1, ..., t_2.A_d$, we have:

$$t \in \Pi_S(\sigma_P(T_1 \times T_2)).$$

Proof of $M_2 \subseteq M_1$. Every tuple in $\Pi_S(\sigma_P(T_1 \times T_2))$ is produced from the following process. First, fix a tuple $t_1 \in T_1$ and a tuple $t_2 \in T_2$. Concatenate them to obtain a tuple $(t_1, t_2) \in T_1 \times T_2$. Check whether $t_1.A_i = t_2.A_i$ for every $i \in [1, d]$. If yes, we generate a tuple t from (t_1, t_2) by discarding $t_2.A_1, ..., t_2.A_d$.

It suffices to prove that $t[T_1] \in T_1$ and $t[T_2] \in T_2$, namely, $t \in T_1 \bowtie T_2$ by definition of natural join. This is obvious because $t_1 = t[T_1]$ and $t_2 = t[T_2]$.

1