
CSC 6210 Advanced Multidimensional Search

Jintian DENG

December 12, 2009

1 Problem 1

Problem definition:

Build an external priority search tree[Arg04b] on a set of N points in O(N
B logB N)I/Os,

assuming that the memory size M at least B2.

Solution:

This problem can be solved easily using distribution sweep[GTVV93]. We
use an optimal external sorting, e.g. distribution sort or merge sort, to sort
all points into two lists, one sorted by x-axis and the other by y-axis. The list
sorted by x is used to locate medians which we will use to distribute the points
evenly into B vertical slabs Si. The list sorted by y is used to perform the sweep
from top to bottom.

Every time a point is encountered, we insert it into a list Ai associated
with the slab Si in which the point lies. After the sweep, each Ai is ordered
along the y-axis since we take a top-down sweep. So we can easily take the B
highest points in each slabs Si just using O(1)I/Os without any sorting. After
that we build a B2-structure[Arg04a] over these B2 points and zoom in each
slabs Si, using the ordered list Ai and do the procedure recursively down. We
stop our recursion when we have ≤ B2 points in one slab(Other slabs will also
have ≤ B2 points since we distribute the points evenly). In this case, we can
simply construct a B2-structure over these points and construct a leaf node of
the tree. Since every point is stored in precisely one B2-structure and each node
is associate with one B2-structure, the height of the tree is O(logB

N
B2).

Sorting the points requires O(N
B log M

B

N
B), which is equal to O(N

B logB N) if

M ≥ B2. In each level, we scan all points once and distribute them to next
level. This requires O(N

B) each level and O(N
B logB

N
B2) = O(N

B logB N) in total.
For each B2-structure, we spend O(B)I/Os to get the corresponding B2 points

from each list Ai. A B2-structure can be constructed in O(B2

B log M

B

B2

B) =

O(B)I/Os. Since there are only N
B2 B2-structures, we spend O(N

B) to construct
all the B2-structure. So the time complexity of our algorithm is bounded by
O(N

B logB N)I/Os.

1

2 Problem 2

Problem definition:

Let N be the number of segments in S. Give an algorithm that finds the
lower envelop in O(N

B logB N)I/Os, assuming that the memory size M is at least
B2.

Solution:

An external priority tree[Arg03] can solve this problem in the required
bound. The main idea is performing a vertical plane sweep from left to right
and handling insertion and deletion in a buffer tree[Arg03]. When we encounter
the beginning of a segment, we insert its y value into the buffer tree, we delete
it when we meet its ending. However, there are several subtle issues to be
illustrated.

Just before the first deletion, we perform a buffer-emptying process on all
nodes on the path from the root to the leftmost leaf using O(M

B log M

B

N
B)I/Os

amortized. Then we can delete the αM(0 < α ≤ 1) smallest elements in the tree
and store them in the main memory. Let S represents these elements. After
this operation, every time an insertion comes, we first check whether its y value
is smaller than any element in S. If it is, we insert it into S. We maintain the
invariant that S is sorted. Since it’s in main menory, this will induce no I/O
cost. If S exceeds its capacity after this insertion, we can simply remove the
largest element and insert it back into the buffer tree. Every time a deletion
comes, we first check whether the element to be deleted is in S. We delete
it from S if it’s. Otherwise we ’insert’ the deletion into the buffer tree. If S
becomes empty after this deletion, we perform another buffer-emptying process
on all nodes on the path from the root to the leftmost leaf.

We can detect the lower envelop by monitoring the change of the smallest
element in S since following our strategy, the smallest alive element is alway
inside S.

Maintaining S requires no I/Os if S is not empty. When S becomes empty,
we actually perform a deletemin[Arg03] operation on the buffer tree. The num-
ber of deletemin operation is bounded by O(N

αM) and each deletemin consumes

O(M
B log M

B

N
B)I/Os amortized. Insertion and deletion are handled as in the nor-

mal buffer tree. So the time complexity of our algorithm is O(N
B log M

B

N
B)I/Os.

When M ≥ B2, O(N
B log M

B

N
B) = O(N

B logB N).

3 Bonus problem

Problem definition:

Consider a structure that can be built in O(N
B logB N)I/Os (where N is the

2

number of items indexed), and answer a query in O(logB N)I/Os. Improve log-
arithmic rebuilding to obtain a semi-dynamic structure that supports queries
still in O(log2

B N)I/Os, but insertion in O(1
√

B
log2

B N)I/Os.

solution:

Let V be the set of N items we index and D be the index structure. Log-
arithmic rebuilding[Ben79] essentially partition the V into logB N subset Vi

of exponentially increasing size Bi and build a static structure Di for each of
these subsets. In order to achieve our required bound, we can adjust the size
of each Vi into (

√
B)i. It turns out that we increase the number of Di to

O(log√B N) = O(logB N). So our queries can still be answered in O(log2

B N)
since D can answer a query in O(logB N).

An insertion is handled by finding the first structure Di such that
∑i

j=1
|Di| ≤

(
√

B)i, discarding all structures Dj , j ≤ i, and building a new Di from the ob-

jects in these structures using O(((
√

B)i/B) logB N) = O(Bi/2−1 logB N)I/Os.

Now because of the way Di was chosen, we know that
∑i−1

j=1
|Di| > (

√
B)i−1

which means that at least Bi/2−1/2 objects are moved from lower indexed struc-
tures Dj to Di. If we divide the Di construction cost between these objects, each
of them has to pay O(1

√

B
logB N)I/Os. An object can at most move O(logB N)

times during N insertions since it never move from a higher to a lower index
structure. Thus the amortized cost of an insertion is O(1

√

B
log2

B N)I/Os.

References

[Arg03] Lars Arge. The Buffer Tree: A Technique for Designing Batched
External Data Structures. Algorithmica, 37(1):1–24, 2003.

[Arg04a] Lars Arge. External Geometric Data Structures. In COCOON,
page 1, 2004.

[Arg04b] Lars Arge. External Memory Geometric Data Structures. EEF

Summer School on Massive Datasets. Springer Verlag, 2004.

[Ben79] Jon Louis Bentley. Decomposable Searching Problems. Inf. Process.

Lett., 8(5):244–251, 1979.

[GTVV93] Michael T. Goodrich, Jyh-Jong Tsay, Darren Erik Vengroff, and
Jeffrey Scott Vitter. External Memory Computational Geometry.
In FOCS, pages 714–723, 1993.

3

	Problem 1
	Problem 2
	Bonus problem

