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Forewords

The R-tree does not have interesting worst-case guarantees on search performance. It is possible
to design a dataset and a query [1] such that the query cost of an R-tree is as expensive as a
brute-force scan. However, it is well-known that the R-tree is fairly efficient for practical data and
queries. This phenomenon motivated people to look for a way to understand this structure in a
more formal manner. An important outcome of the relevant studies is the so-called cost model,
which is an analytical formula that estimates the query cost, based on the parameters of the query
and the underlying dataset. Besides revealing the characteristics of the R-tree, such cost models
are especially useful for query optimization in a database system (where the optimizer relies on
accurate estimates of query cost to decide a good execution plan).

Accurate cost models are known for many types of queries including range searching, nearest neigh-
bor search, etc. This lecture will focus on range searching because its cost model is the foundation
of the models of other problems.

1 A tree-dependent model

For simplicity, we consider a 2d space Ω, where the x- and y-dimensions have a domain length of
1. Without loss of generality, we focus on the queries whose search regions q have length lx (ly) on
the x- (y-) dimension. Furthermore, we assume:

A1: lx � 1 and ly � 1, and

A2: the underlying dataset P has a large cardinality N .

Cost model analysis usually targets a specific query distribution. We will consider that the centroid
of a query is distributed uniformly in Ω. Our discussion can be generalized to higher dimensionalities
and other query distributions.

Let us first deal with the following problem. Let u be a node in an R-tree. Denote by au (bu)
the extent length of MBR(u) on the x- (y-) dimension. The goal is to calculate the probability
Pr(u) that a query needs to access u, or equivalently, the probability that the query rectangle q
intersects MBR(u). When lx = ly = 0, namely, q degenerates into a point, Pr(u) is obviously aubu.
For general lx and ly, let us extend the x- and y-extents of MBR(u) by lx and ly respectively, as
shown in Figure 1 (note that the extension is symmetric to the centroid of MBR(u)). Refer to the
resulting rectangle r as the extended MBR of u. It is easy to see that MBR(u) intersects q if and
only if r contains the centroid of q. Since the centroid is uniformly distributed in the data domain,
we have

Pr(u) = (lx + au)(ly + bu) (1)
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Figure 1: Extending MBR(u) by lx and ly on the x- and y-dimensions respectively

when r completely lies in Ω. If part of r falls out of Ω, the probability is smaller. However, under
the assumptions A1 and A2, there are very few nodes whose extended MBRs fall partially out of
Ω. Hence, we can ignore such a case to keep our formulae simple.

In an earlier lecture, we learned that it is important to minimize the perimeter of MBR(u) in
constructing an R-tree, if queries are square-like, namely lx ≈ ly (which is true in practice). We are
now ready to explain this in a more rigorous manner. When lx = ly = l, Equation 2 can be written
as:

Pr(u) = l2 + l(au + bu) + aubu. (2)

It is thus clear that Pr(u) depends both on aubu (which is the area of MBR(u)) and au + bu
(which is half of the perimeter of MBR(u)). Hence, ideally both the area and perimeter must be
minimized. If only one metric needs to be chosen, perimeter is better because a rectangle with a
small perimeter usually has a small area, but not the vice versa.

Equipped with Equation 2, we are able to derive a cost model to compute the expectation E[cost(q)]
of the cost of a query (whose search region has extent lengths lx and ly) on an R-tree T. Specifically,
for each node u ∈ T, define a random variableXu that equals 1 if q intersectsMBR(u) or 0 otherwise.
Then:

E[cost(q)] = E

[

∑

u∈T

Xu

]

=
∑

u∈T

E[Xu]

=
∑

u∈T

Pr(u). (3)

2 A model for uniform data

The model of Equation 3 is difficult to evaluate because it requires the knowledge of the extent
lengths of all the MBRs in an R-tree. In practice, a useful model should have as few parameters as
possible. Such a model typically makes extra assumptions about the data distribution. Next, we
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Figure 2: All leaf MBRs are aligned into a grid.

will derive a model for unform distribution, namely, the N points in our dataset P are uniformly
distributed in Ω.

Besides N , the model takes another parameter f , which is the average fanout of all nodes in an
R-tree. The value of f can be easily maintained along with the insertions and deletions on the tree
(this is left as an exercise). In practice, leaf and non-leaf elements may require different amounts
of storage, so the values of f may differ for leaf and non-leaf nodes. For simplicity, we ignore this
complication and assume that all nodes in the tree have fanout f , except the root. The extension
to account for different fanouts is straightforward. Also note that since each node (except the root)
must have Ω(B) elements, it follows that f = Θ(B) for all the non-root levels.

We will carry out our analysis in a level-by-level manner, starting with the leaf nodes at level 0. Let
cost0(q) denote the number of leaf nodes that need to be visited by a range query q (with extent
lengths ax and by on the two dimensions, respectively). Following Equation 3, we have the following
about the expectation E[cost0(q)]:

E[cost0(q)] =
∑

leaf u ∈ T

Pr(u). (4)

Next we will simplify the above equation. The rational is that since the data distribution is uniform,
the MBRs of all the leaf nodes should be highly similar, thus casting the hope that Pr(u) can be
represented with the same equation for all u. It is easy to see that the number of leaf nodes equals
N/f . As the x- and y-dimensions are symmetric, when assumption A2 holds, the leaf MBRs of a
good R-tree should be fairly regular in the following senses:

• each MBR is a square;

• all MBRs form a
√

N/f ×

√

N/f grid as in Figure 2, such that no two MBRs intersect each
other, and the union of all MBRs cover the whole Ω.

Therefore, the MBR of each leaf u has the same extent length au = bu = 1/
√

N/f on the x- and
y-dimensions. Thus, Equation 2 becomes:
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Pr(u) =

(

√

f

N
+ lx

)(

√

f

N
+ ly

)

(5)

leading to

E[cost0(q)] =
N

f

(

√

f

N
+ lx

)(

√

f

N
+ ly

)

. (6)

The analysis can be easily extended to the i-th (i > 0) level. Specifically, since this level has N/f i+1

nodes, the MBR of each node is a square with extent length 1/
√

N/f i+1. Hence, the expectation
E[costi(q)] of the number of level-i nodes accessed by a query equals:

E[costi(q)] =
N

f i+1

(
√

f i+1

N
+ lx

)(
√

f i+1

N
+ ly

)

. (7)

3 Remarks

Equation 2 initially appeared independently in [2, 3]. The tree-dependent model was first discussed
in [3]. The simplified model was proposed by [4], where the authors also discuss how to extend the
model to predict the query cost on non-uniform data.
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