
CSC6210: Advanced multidimensional search Fall 2009

CSE department, Chinese University of Hong Kong

Lecture 12: R-trees

By Yufei Tao (taoyf@cse.cuhk.edu.hk) Last revision: Nov 22, 2009

Forewords

We have learned many structures dedicated to specific problems. For example, the persistent B-tree
is good for orthogonal segment-intersection queries, the external interval tree is good for stabbing
queries, locality sensitive hashing for nearest neighbor search, and so on. In practice, however, it
is unrealistic to create so many different indexes on the same dataset, because doing so will incur
prohibitive space consumption and update overhead. Therefore, it would be nice to have a single,
all-around, structure, which occupies small space, can be updated efficiently, and most importantly,
supports a large variety of queries.

In this lecture, we will discuss such an all-around structure called the R-tree. Unlike the structures
mentioned earlier, the R-tree is heuristic in nature, because it does not have any attractive theoreti-
cal guarantees on the search performance. Nevertheless, the practical efficiency of this structure has
been widely established for many problems, especially if the dimensionality is low. Interestingly, for
realistic datasets, there has been evidence [1] that R-trees even outperform some theoretical worst-
case efficient structures. This is not as surprising as it may appear. The design of a theoretical
structure aims at handling the most adverse datasets. Much of the design is not really needed for
“good” datasets, and thus, may actually cause unnecessary overhead on such data.

1 The structure

There are many variations of the R-tree in the literature [2, 3, 5, 6, 7]. The version to be described
below is similar to the R∗-tree [2], with some simplification in order to focus on the most crucial
ideas. Also, our discussion is based on 2d point data, but the extensions to rectangle data and
higher-dimensionalities are straightforward.

Let P be a set of points. An R-tree stores all these points in leaf nodes, each of which contains Θ(B)
points, where B is the size of a disk page. Each non-leaf node u has Θ(B) children, except the root
which must have 2 children at minimum unless it is the only node in the tree. For each child v, u
stores a minimum bounding rectangle (MBR), which is the smallest rectangle that tightly encloses
all the data points in the subtree of v. Note that there is no constraint on how points should be
grouped into leaf nodes, and in general, how non-leaf nodes should be grouped into nodes of higher
levels. Since each point is stored only once, the entire tree consumes linear space O(N/B), where
N is the cardinality of P .

Figure 1 shows an example where P has 13 points p1, p2, ..., p13. Points p1, p2, p3, for example, are
grouped into leaf node u1. This leaf is a child of of non-leaf node u6, which stores an MBR r1 for
u1. Note that r1 tightly bounds all the points in u1.

1

20 4 6 8 10

2

4

6

8

10 p1

p2

p3
p4

p5

p6
p7

p8
p9

p10

p11

p12

p13

r1

r2

r3

r4 r5

r6

r7 p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 p13

r1 r2 r3 r4 r5

r6 r7

u1 u2 u3 u4 u5

u6 u7

u8

(a) Data and MBRs (b) The structure

Figure 1: An R-tree

2 Insertions and deletions

Intuitively, in a good R-tree, nodes should have small MBRs. To see this easily, think about how
to use the tree in Figure 1 to answer a range query. Namely, given a query rectangle q, we want to
find all the points in P that are covered by q. It is easy to see that we only have to visit those nodes
whose MBRs intersect q. Therefore, reducing the extents of the MBRs benefits query efficiency as
fewer MBRs are expected to intersect q.

What do we mean, however, by a small MBR? Or in other words, what should the update algorithms
of an R-tree minimize about the MBRs? A quick answer to think of is the area, but there exists
a better answer. Figure 2 shows two MBRs, which actually have the same area. It turns out that
the right (square) MBR leads to better performance in practice. Implication? We should minimize
the perimeter of an MBR. This may look fairly reasonable in retrospect: a rectangle with a small
perimeter almost always has a small area, but the opposite is not true.

Figure 2: The right MBR is preferred

Next, we describe the insertion and deletion algorithms, both of which attempt to create square-like
MBRs by reducing their perimeters as much as possible.

2.1 Insertions

To insert a point p, we use a strategy similar to that of a B-tree. Specifically, we add p to a leaf
node u by following a single root-to-leaf path. If u overflows, it is split, which creates a new child
of parent(u). In case parent(u) overflows, it is also split, which propagates upwards in the same
manner. Finally, if the root is split, then a new root is created.

While all these sound familiar, there are, however, two important differences. First, although in

2

the B-tree the insertion path is unique (i.e., the leaf supposed to accommodate the new item is
unambiguous), this is not true at all for the R-tree. In fact, the new point p can be inserted into
any leaf, which always results in a legal structure. If, however, a bad leaf is chosen (to contain p),
its MBR may need to be enlarged substantially, thus harming the efficiency of the tree. Second,
the split algorithm is not as trivial as in a B-tree because now we have multiple dimensions to
tackle. Next, we will deal with the two issues separately. Note that the (heuristic) strategies to be
introduced are not the only ones. In fact, this is why there are so many variants of R-trees – each
of them has its own strategies.

Choosing a subtree to insert. We are essentially facing the following problem. Given a non-leaf
node u with children v1, v2, ..., vf for some f = Θ(B), we need to pick the best child v∗ such that
the new point p is best inserted into the subtree of v∗. An approach that seems to work well in
practice is a greedy one. Specifically, v∗ can simply be the child vi whose MBR requires the least
increase of perimeter in order to cover p. For example, in Figure 3, both MBRs r1 and r2 must be
expanded to enclose p, but r2 incurs smaller perimeter increase, and hence, is a better choice.

p

r1

r2

Figure 3: MBR r2 requires smaller perimeter increase to cover p

It is possible that p falls into the overlapping region of multiple MBRs. All those MBRs have a
tie because none of them needs any perimeter increase to cover p. In this case, the winner can be
decided according to other factors such as picking the MBR having the smallest area.

Node split. The node split problem can be phrased as follows. Given a set S of B +1 points, split
it into disjoint subsets S1 and S2 with S1 ∪ S2 = S such that

• |S1| ≥ λB, |S2| ≥ λB, where constant λ is the minimum utilization rate of a node, and

• the sum of the perimeters of MBR(S1) and MBR(S2) is small.

In the sequel, for simplicity we assume that |S| is an even number, and |S1| = |S2| = |S|/2, i.e., we
always aim at an even split. The extensions to uneven splits are straightforward.

Ideally, we would like to find the optimal split that minimizes the perimeter sum of MBR(S1) and
MBR(S2). Since an MBR is decided by 4 coordinates (i.e., a pair of opposite corners), it is easy to
find the optimal split in O(B4) time. This can be significantly improved to O(B2) time using a trick
in [4]. Unfortunately, even a quadratic split time is usually excessively long in practice. Therefore,
we turn our attention to heuristics that do not guarantee optimality, but usually produce fairly
good splits. Next, we will describe a split algorithm that runs in O(B log B) time, or O(dB log B)
time in general d-dimensional space.

3

(a) Split by cutting the x-dimension (b) Split by cutting the y-dimension

Figure 4: Splitting a node

The idea of our algorithm is to always split S using an axis-orthogonal cut. Consider, for example,
a cut along the x-axis. For this purpose, we sort the points of S in ascending order of their x-
coordinates. Then, we put the first B/2 points in the sorted order into S1, and the rest into S2.
The split along the y-axis can be obtained in the same way. See Figure 4 (where S has 8 points).
The final split is the better one of the two splits.

The above applies to splitting a leaf node. The case of non-leaf node is a bit different because
the items to be split are MBRs, as opposed to points. Nevertheless, similar heuristics can still be
applied by, for example, sorting the MBRs by their centrioids along each dimension.

2.2 Deletions

Deleting a point from an R-tree is carried out in an interesting manner. In particular, node under-
flows are handled in a way that differs considerably from the conventional merging approach as in
a B-tree.

Specifically, let p be the point to be deleted. First, we need to find the leaf node u where p is
stored. This can be achieved with a special range query using p itself as the search region. Then, p
is removed from u. The deletion finishes if u still has λB items, where λ denotes the minimum node
utilization. Otherwise, u underflows, which is handled by first removing u from its parent, and then
re-inserting all the remaining points in u (using exactly the insertion algorithm mentioned earlier).
See Figure 5.

Note that removing u from parent(u) may cause parent(u) to underflow too. In general, the
underflow of a non-leaf node u′ is also handled by re-insertions, with the only difference that the
items re-inserted are MBRs, and each MBR is re-inserted to the same level of u′.

It is worth mentioning that while we can also design merging-based algorithms to handle node
underflows, re-insertion actually gives better search performance [2]. This is because the structure
of an R-tree is sensitive to the insertion order of the data points. Re-insertion gives the the early-
inserted points to be inserted in other (better) branches, thus improving the overall structure.

References

[1] L. Arge, M. de Berg, H. J. Haverkort, and K. Yi. The priority R-tree: A practically efficient and
worst-case optimal R-tree. In Proc. of ACM Management of Data (SIGMOD), pages 347–358,
2004.

4

u

points in u to be re-inserted

.
(a) node u underflows (b) re-insertion

Figure 5: Handling a node underflow

[2] N. Beckmann, H. Kriegel, R. Schneider, and B. Seeger. The R*-tree: An efficient and robust
access method for points and rectangles. In Proc. of ACM Management of Data (SIGMOD),
pages 322–331, 1990.

[3] N. Beckmann and B. Seeger. A revised R*-tree in comparison with related index structures. In
Proc. of ACM Management of Data (SIGMOD), pages 799–812, 2009.

[4] Y. J. Garćıa, M. A. Lopez, and S. T. Leutenegger. On optimal node splitting for R-trees. In
Proc. of Very Large Data Bases (VLDB), pages 334–344, 1998.

[5] A. Guttman. R-trees: a dynamic index structure for spatial searching. In Proc. of ACM
Management of Data (SIGMOD), pages 47–57, 1984.

[6] I. Kamel and C. Faloutsos. Hilbert R-tree: An improved R-tree using fractals. In Proc. of Very
Large Data Bases (VLDB), pages 500–509, 1994.

[7] T. K. Sellis, N. Roussopoulos, and C. Faloutsos. The R+-tree: A dynamic index for multi-
dimensional objects. In Proc. of Very Large Data Bases (VLDB), pages 507–518, 1987.

5

