
CSC6210: Advanced multidimensional search Fall 2009

CSE department, Chinese University of Hong Kong

Lecture 10: Locality sensitive hashing

By Yufei Tao (taoyf@cse.cuhk.edu.hk) Last revision: Nov 9, 2009

Forewords

This lecture discusses nearest neighbor (NN) search in high-dimensional space. Specifically, let D
be a set of d-dimensional points, where d is a large number. Given a query point q, the goal of NN
search is to return the point o∗ ∈ D that is the closest to q among all points in D. Formally, for
any point o ∈ D, it holds that ‖o∗, q‖ ≤ ‖o, q‖, where ‖., .‖ denotes the distance of two points.

NN search has been very well solved when the dimensionality d is small. For example, a well-known
index structure called the R-tree [1, 4] (which we will study later in this course) can be used to
answer NN queries efficiently for up to d = 5. There exist other structures (e.g., the iDistance [7])
that can handle higher dimensionalities. However, all these structures are eventually outperformed
by a simple brute-force scan when the dimensionality reaches a certain level. This frustrating
phenomenon is known as the curse of the dimensionality.

Fortunately, many practical applications do not require exact answers to NN queries. Instead, they
can tolerate some small imprecision, that is, it is acceptable to return an approximate NN, which
is not too far from the query than its real NN. This motivates the definition of c-approximate NN.
Specifically, a data point o ∈ D is a c-approximate NN of a query q if its distance to q is at most c
times the distance from q to its real NN o∗, namely, ‖o, q‖ ≤ c‖o∗, q‖. The constant c is referred to
as the approximation ratio.

Several effective techniques have been proposed to perform c-approximate NN search. In this lecture,
we will study an important technique called locality sensitive hashing (LSH) [6]. A salient feature
of LSH is that it works well in arbitrarily high dimensionality d. In particular, regardless of the
value of d, LSH always guarantees c-approximate results with good space and query complexities.
Furthermore, it is fairly simple to implement and can be easily incorporated in a relational database,
even though its underlying theory is a somewhat complex.

To facilitate discussion, we assume that the distance metric is the `2 norm, but LSH can be adapted
to support many other distance metrics as well. Furthermore, we assume that there is a lower
bound of 1 on the distance of two points that do not coincide with each other. This is usually true
in practice with proper scaling.

1 Ball cover

LSH does not solve c-approximate NN queries directly. Instead, it is designed [6] for a different
problem called c-approximate ball cover (BC). Let D be a set of points in d-dimensional space.
Denote by B(q, r) a ball that centers at the query point q and has radius r. A c-approximate BC
query returns the following result:

(1) If B(q, r) covers at least one point in D, return a point whose distance to q is at most cr.

(2) If B(q, cr) covers no point in D, return nothing.

1



(3) Otherwise, the result is undefined.

Figure 1: Illustration of ball cover queries

Figure 1 shows an example where D has two points o1 and o2. Consider first the 2-approximate BC
query q1 (the left black point). The two circles centering at q1 represent balls B(q1, r) and B(q1, 2r)
respectively. Since B(q1, r) covers a data point o1, the query will have to return a point, but it can
be either o1 or o2, as both of them fall in B(q1, 2r). Now, consider the 2-approximate BC query q2.
Since B(q2, 2r) does not cover any data point, the query must return empty.

2 Locality-sensitive hasing

Let h(o) be a hash function that maps a d-dimensional point o to a one-dimensional value. It is
locality sensitive if the chance of mapping two points o1, o2 to the same value grows as their distance
‖o1, o2‖ decreases. Formally:

Definition 1. Given a distance r, approximation ratio c, probability values p1 and p2 such that
p1 > p2, a hash function h(.) is (r, cr, p1, p2) locality sensitive if it satisfies both conditions below:

1. If ‖o1, o2‖ ≤ r, then Pr[h(o1) = h(o2)] ≥ p1;

2. If ‖o1, o2‖ > cr, then Pr[h(o1) = h(o2)] ≤ p2.

LSH functions are known for many distance metrics. For `2 norm, a popular LSH function is defined
as follows [2]:

h(o) =

⌊

~a · ~o + b

4

⌋

. (1)

Here, ~o represents the d-dimensional vector representation of a point o; ~a is another d-dimensional
vector where each component is drawn independently from the normal distribution [2]; ~a ·~o denotes
the dot product of these two vectors. Finally, b is uniformly drawn from [0, 4).

Equation 1 has a simple geometric interpretation. Assuming dimensionality d = 2, Figure 2 shows
the line that crosses the origin, and its slope coincides with the direction of ~a. For convenience,
assume that ~a has a unit norm, so that the dot product ~a ·~o is the projection of point o onto line ~a,
namely, point A in the figure. The effect of ~a · ~o + b is to shift A by a distance b (along the line) to
a point B. Finally, imagine we partition the line into intervals with length 4; then, the hash value
h(o) is the ID of the interval covering B.

The intuition behind such a hash function is that, if two points are close to each other, then with
high probability their shifted projections (on line ~a) will fall in the same interval. On the other
hand, two faraway points are very likely to be projected into different intervals. The following is
proved in [2]:

2



Figure 2: Geometric interpretation of LSH

Lemma 1. Equation 1 is (1, c, p1, p2) locality sensitive, where p1 and p2 are two constants satisfying
ln 1/p1

ln 1/p2
≤ 1

c .

3 The structure

Next, we describe an index structure for solving the ball cover problem (see Section 1). As we will
see, the structure preserves the spatial proximity of the underlying dataset D, but in a way very
different from conventional multidimensional structures (e.g., the R-tree, iDistance, and so on).
Without loss of generality, assume r = 1; for r = r′ > 1, the problem can be converted to the case
r = 1 by shrinking the data domain by a factor of r′.

Denote by H the family of hash functions in the form of Equation 1. Namely, for any combination
of ~a and b, H contains a function that is defined by ~a and b. Note that all the member functions in
H share the same r, c, p1, and p2 whose meanings are described in Definition 1. Furthermore, as
indicated in Lemma 1, the value of r equals 1.

To build an index structure on the dataset D, we choose independently m random members h1(.),
h2(.), ..., hm(.) of H, where m is given by

m = log1/p2
n (2)

with n being the cardinality of the dataset D. For each data point o ∈ D, each hi(o), 1 ≤ i ≤ m,
converts o to a 1D value. Hence, by concatenating all the m values together, we obtain an m-
dimensional hash vector G(o):

G(o) = 〈h1(o), h2(o), ..., hm(o)〉. (3)

If all the points o ∈ D with the same G(o) are grouped into a bucket, essentially we have created
a hash structure on D, using G(.) as the hash function (which in turn composites m independent
hash functions).

If two points o1, o2 are far away from each other, they are unlikely to fall in the same bucket. In
particular, since each hi(.) is (1, c, p1, p2) locality sensitive, the probability of hi(o1) = hi(o2) is at
most p2 for any two points o1 and o2 whose distance is larger than c. The independence of h1(.),
h2(.), ..., hm(.) then ensures that the probability of G(o1) = G(o2) is at most pm

2 . By choosing a
sufficiently large m, pm

2 can be made arbitrarily small. Our choice in Equation 2 makes pm
2 = 1/n,

which allows us to derive the nice quality guarantee of LSH, as elaborated in Section 5.

3



Preventing distant points from falling in the same bucket is crucial for preserving the spatial prox-
imity, but it alone is not enough. It is equally important to ensure that close points will appear in
the same bucket with high probability. Unfortunately, this cannot be accomplished using a single
hash structure. We could claim that (similar to deriving pm

2 ) if two points o1, o2 are within distance
1, they fall in the same bucket with probability at least pm

1 . This, however, is not useful because
pm
1 is not a large probability given the value of m in Equation 2. In general, we have two conflicting

goals here — pm
2 needs to be small, but conversely, pm

1 has to be large. Unfortunately, the p1 and
p2 of Equation 1 differ only slightly, such that no m fulfills both purposes at the same time.

LSH circumvents the problem cleverly by building multiple hash structures. Specifically, by repeat-
ing the construction procedure described earlier independently l times, we create l hash structures
T1, T2, ..., Tl, where l is given by:

l = n1/c. (4)

As explained in detail later, such an l ensures that if o1 and o2 are close, then they fall in the same
bucket in at least one hash structure with high probability.

Each hash structure occupies the same space O(nd) as the dataset D (note that O(d) space is needed
to store a point’s coordinates). Hence, the total space is O(dn1+1/c).

4 Query algorithm

As explained in Section 3, the index consists of l independent hash structures T1, T2, ..., Tl. Recall
that each structure Ti (1 ≤ i ≤ l) is built from a (composite) hash function Gi as illustrated in
Equation 3. Next, we discuss how to answer a NN query q.

First, the query algorithm identifies the bucket Ii in each Ti that q is hashed to, i.e., Ii corresponds
to Gi(q). Then, the algorithm simply probes all the data points in the l buckets I1, I2, ..., Il, if they
totally contain at most 2l + 1 points (including duplicates). In case the total size of the l buckets
is greater than 2l + 1, then the algorithm simply probes 2l + 1 arbitrary points in those buckets (it
does not matter how many points are probed from each bucket). Finally, from the points probed,
the algorithm identifies the one o that is nearest to q. If ‖o, q‖ ≤ c, o is returned; otherwise, the
algorithm returns nothing.

Since at most O(l) points are processed, the query time is O(dl) = O(dn1/c), noticing that evaluating
the `2 distance of a point takes O(d) time. Note that the query time is significantly lower than the
cost O(nd) of brute-force scan.

5 Analysis of quality guarantee

In this section, we prove that, with high probability, the query algorithm in Section 4 returns a
correct result for c-approximate ball cover (where r = 1). For convenience, we say that a point
o ∈ D is close (to the query q) if it is covered by ball B(q, 1) (which centers at q and has radius 1).
On the other hand, we say that a point o ∈ D is far if it is outside ball B(q, c).

We will show that if ball B(q, 1) covers a point o∗ in the dataset D, then the algorithm returns
a point in B(q, c) (rigorously speaking, it is also necessary to show that if B(q, c) is empty, then
nothing is returned; but this is trivial). Observe that this is correct if both of the following properties
hold:

4



P1. At most 2l far points are in the same bucket as q in all the hash structures.

P2. o∗ falls in the same bucket as q in at least one hash structure.

We have the following crucial lemma.

Lemma 2. Properties P1 and P2 hold simultaneously with at least constant probability.

Proof. A far point has probability at most pm
2 = 1/n of falling in the same bucket as q in one hash

structure. Hence, the expected number of far points in the same bucket as q in l hash structures
equals l. By the Markov Inequality, the probability that there are more than 2l such far points is
at most 1/2. Namely, the probability that property P1 does not hold is at most 1/2.

In a hash structure, point o∗ has probability at least pm
1 to fall in the same bucket as q. Hence,

the probability that o∗ is not in the same bucket as q in any of the l hash structures is at most
(1−pm

1 )l ≤ (e−pm

1 )l, which is at most 1/e with our choices of m and l. In other words, the probability
that property P2 does not hold is at most 1/e.

By the Union Bound, the probability that at least one of P1 and P2 does not hold is at most
1/2 + 1/e. Hence, both properties hold with probability at least 1/2 − 1/e > 0.13.

Remark. As a standard trick, by increasing l by a constant factor of log(1/δ), the success proba-
bility can be boosted to at least 1 − δ, for arbitrarily small δ.

6 From ball cover to nearest neighbor search

We have shown that LSH can be used to answer approximate ball cover queries. Interestingly,
approximate NN retrieval can be reduced to approximate ball cover search, which enables LSH to
be applied for NN search. The simplest reduction works as follows [3]. We can create an index
to support

√
c-approximate ball cover with radius r = 1,

√
c, (

√
c)2, (

√
c)3, ..., respectively. Given a

query point q, we execute a ball-cover query on these indexes in ascending order of their r, until
the search at any index returns a non-empty result, which is directly returned as the final result. It
is not hard to verify that such a result is a c-approximate NN of q. The drawback of this approach
is that a large number of indexes must be stored and querying, thus incurring expensive space and
query cost. In the next lecture, we will discuss another technique to overcome the drawback.

Finally, it is worth mentioning that there exist complicated NN-to-BC reductions [5, 6] that have
better space and query complexities. However, those reductions are highly theoretical, and are
difficult to implement in practice.

References

[1] N. Beckmann, H. Kriegel, R. Schneider, and B. Seeger. The R*-tree: An efficient and robust
access method for points and rectangles. In Proc. of ACM Management of Data (SIGMOD),
pages 322–331, 1990.

[2] M. Datar, N. Immorlica, P. Indyk, and V. S. Mirrokni. Locality-sensitive hashing scheme based
on p-stable distributions. In Symposium on Computational Geometry (SoCG), pages 253–262,
2004.

5



[3] A. Gionis, P. Indyk, and R. Motwani. Similarity search in high dimensions via hashing. In Proc.
of Very Large Data Bases (VLDB), pages 518–529, 1999.

[4] A. Guttman. R-trees: a dynamic index structure for spatial searching. In Proc. of ACM
Management of Data (SIGMOD), pages 47–57, 1984.

[5] S. Har-Peled. A replacement for voronoi diagrams of near linear size. In Symposium on Foun-
dations of Computer Science (FOCS), pages 94–103, 2001.

[6] P. Indyk and R. Motwani. Approximate nearest neighbors: Towards removing the curse of
dimensionality. In Proc. of ACM Symposium on Theory of Computing (STOC), pages 604–613,
1998.

[7] H. V. Jagadish, B. C. Ooi, K.-L. Tan, C. Yu, and R. Zhang. idistance: An adaptive b+-tree
based indexing method for nearest neighbor search. ACM Transactions on Database Systems
(TODS), 30(2):364–397, 2005.

6


