
External Memory Geometric Data Structures

Lars Arge

Department of Computer Science

University of Aarhus and Duke University

Augues 24, 2005

1 Introduction

Many modern applications store and process datasets much larger than the main memory of even
state-of-the-art high-end machines. Thus massive and dynamically changing datasets often need
to be stored in space efficient data structures on external storage devices such as disks. In such
cases the Input/Output (or I/O) communication between internal and external memory can be-
come a major performance bottleneck. Many massive dataset applications involve geometric data
(for example points, lines, and polygons) or data that can be interpreted geometrically. Such appli-
cations often perform queries that correspond to searching in massive multidimensional geometric
databases for objects that satisfy certain spatial constraints. Typical queries include reporting the
objects intersecting a query region, reporting the objects containing a query point, and reporting
objects near a query point.

While development of practically efficient (and ideally also multi-purpose) external memory
data structures (or indexes) has always been a main concern in the database community, most
data structure research in the algorithms community has focused on worst-case efficient internal
memory data structures. Recently however, there has been some cross-fertilization between the two
areas. In these lecture notes we discuss some of the recent advances in the development of worst-
case efficient external memory geometric data structures. We will focus on fundamental dynamic
structures for one- and two-dimensional orthogonal range searching, and try to highlight some of
the fundamental techniques used to develop such structures.

Accurately modeling memory and disk systems is a complex task. The primary feature of
disks we want to model is their extremely long access time relative to that of internal memory. In
order to amortize the access time over a large amount of data, typical disks read or write large
blocks of contiguous data at once and therefore the standard two-level disk model has the following
parameters:

N = number of objects in the problem instance;

T = number of objects in the problem solution;

M = number of objects that can fit into internal memory;

B = number of objects per disk block;

1

B
DMP

Figure 1: Disk model. An I/O moves B contiguous elements between disk and main memory (of
size M).

where B2 ≤ M < N . An I/O operation (or simply I/O) is the operation of reading (or writing)
a block from (or into) disk. Refer to Figure 1. Computation can only be performed on objects in
internal memory. The measures of performance are the number of I/Os used to solve a problem,
the amount of space (disk blocks) used, and sometimes the internal memory computation time.

Several authors have considered more accurate and complex multi-level memory models than
the two-level model. An increasingly popular approach to increase the performance of I/O systems
is to use several disks in parallel so work has especially been done in multi disk models. We will
concentrate on the two-level one-disk model, since the data structures and data structure design
techniques developed in this model often work well in more complex models.

Outline of note. The rest of this note is organized as follows. In Section 2 we discuss the B-
tree, the most fundamental (one-dimensional) external data structure. In Sections 3 to 5 we then
discuss variants of B-trees, namely weight-balanced B-tress, persistent B-trees, and buffer-tress.
In Section 6 we discuss the interval stabbing problem, which illustrates many of the important
techniques and ideas used in the development of I/O-efficient data structures for higher-dimensional
problems. In Section 7 and Section 8 we discuss data structures for 3-sided and general (4-sided)
two-dimensional orthogonal range searching, respectively. Throughout the note we assume that
the reader is familiar with basic internal memory data structures and design and analysis methods,
such as balanced search trees and amortized analysis

Remarks. Ruemmler and Wilkes [69] discuss modern disk systems and why they are hard to
model accurately. The two-level disk model were introduced by Aggarwal and Vitter [11]; see
also e.g. [80, 57]. For convenience we in this note assume that M ≥ B2 (such that M/B ≥ B)
instead of the normal assumption that M ≥ 2B; all the structures we discuss can be modified
to work under the weaker assumption. Aggarwal and Vitter also showed that external sorting
requires Θ(N

B logM/B
N
B) I/Os. For a discussion of parallel disk result see e.g. the recent survey

by Vitter [79]. A somewhat more comprehensive survey of external geometric data structures than
the one given in these notes can be found in a recent survey by the author [12]. While the focus of
this note and the above surveys are on worst-case efficient structures, there are many good reasons
for developing simpler (heuristic) and general purpose structures without worst-case performance
guarantees. A large number of such structures have been developed in the database community.
See for example the surveys in [10, 46, 64].

2

2 B-trees

The B-tree is the most fundamental external memory data structure. It corresponds to an internal
memory balanced search tree. It uses linear space—O(N/B) disk blocks—and supports insertions
and deletions in O(logB N) I/Os. One-dimensional range queries, asking for all elements in the tree
in a query interval [q1, q2], can be answered in O(logB N + T/B) I/Os, where T is the number of
reported elements. The space, update, and query bounds obtained by the B-tree are the bounds
we would like to obtain in general for more complicated problems. The bounds are significantly
better than the bounds we would obtain if we just used an internal memory data structure and
virtual memory. The O(N/B) space bound is obviously optimal and the O(logB N + T/B) query
bound is optimal in a comparison model of computation. Note that the query bound consists of an
O(logB N) search-term corresponding to the familiar O(log2 N) internal memory search-term, and
an O(T/B) reporting-term accounting for the O(T/B) I/Os needed to report T elements.

B-trees come in several variants, which are all special cases of a more general class of trees called
(a, b)-trees:

Definition 1 A tree T is an (a, b)-tree (a ≥ 2, b ≥ 2a − 1) if the following conditions hold:

• All leaves of T are on the same level and contain between a and b elements.

• Except for the root, all nodes have degree between a and b (contain between a − 1 and b − 1
elements)

• The root has degree between 2 and b (contain between 1 and b − 1 elements).

Normally, the N data elements are stored in the leaves (in sorted order) of an (a, b)-tree T , and
elements in the internal nodes are only used to guide searches. This way T use linear space and
has height O(loga N). To answer a range query [q1, q2], we first search down T for q1 and q2 and
then we report the elements in the leaves between the leaves containing q1 and q2. If we choose
a, b = Θ(B) each node and leaf can be stored in O(1) disk blocks. Thus we obtain a tree of height
O(logB N) using O(N/B) disk blocks, where a query can be perform in O(logB N + T/B) I/Os.
Refer to Figure 2.

Θ(B)

Θ(B)

O(logB N)

Figure 2: B-tree. All internal nodes (except possibly the root) have fan-out Θ(B) and there are
Θ(N/B) leaves. The tree has height O(logB N).

To insert an element x in an (a, b)-tree T we first searching down T for the relevant leaf u and
insert x in u. If u now contains b + 1 elements we split it into two leaves u′ and u′′ with d b+1

2 e and
b b+1

2 c elements respectively. Both new leaves now have between b b+1
2 c ≥ a (since b ≥ 2a − 1) and

d b+1
2 e ≤ b (since b ≥ 2a − 1 ≥ 3) elements. Then we remove the reference to u in parent(u) and

3

insert references to u′ and u′′ instead (that is, we insert a new routing element in parent(u)). If
parent(u) now has degree b + 1 we recursively split it. Refer to Figure 3. This way the need for
a split may propagate up through O(loga N) nodes of the tree. A new (degree 2) root is produced
when the root splits and the height of the tree grows by one.

b+1 (b+1)/2 (b+1)/2

v’’v v’

��������������

Figure 3: Splitting a degree b + 1 node v (or leaf with b + 1 elements) into nodes v ′ and v′′.

Similarly, to delete an element x we first find and remove x from the relevant leaf u. If u now
contains a − 1 elements we fuse it with one of its siblings u′, that is, we delete u′ and inserts its
elements in u. If this results in u containing more then b (but less than a − 1 + b < 2b) elements
we split it into two leaves. As before, we also update parent(u) appropriately. If u was split,
the routing elements in parent(u) are updated but its degree remains unchanged; thus effectively
we have taken an appropriate number of elements from u′ and inserted them in u—also called a
share. Otherwise, the degree decreases by one and we may need to recursively fuse parent(u) with a
sibling. Refer to Figure 4. As before, fuse operations may propagate up through O(loga N) nodes.
If this results in the root having degree one, it is removed and its child becomes the new root, that
is, the height of the tree decreases by one.

a−1 >2a−1

v’v v

Figure 4: Fusing degree a − 1 node v (or leaf with a − 1 elements) with sibling v ′.

A single update in an (a, b)-tree can at most cause O(loga N) rebalancing operations (splits or
fuses). In fact, its easy to see that if b = 2a − 1 there exists a sequence of updates where each
update results in Θ(loga N) rebalancing operations. Refer to Figure 5. However, if b = 4a we
only need to modify the delete algorithm slightly to obtain a structure where an update can only
cause O(1

a loga N) rebalancing operations amortized: A new leaf u constructed when performing a
split during insertion rebalancing contains approximately 4a/2 = 2a elements. Thus a rebalancing
operation will not be needed on u until at least a updates (a deletions or 2a insertions) have
been performed in it. Just after a fuse of a leaf u during delete rebalancing, u contains between
a−1+a = 2a−1 and a−1+4a = 5a−1 elements. By splitting u if it contains more than 3a elements
(performing a share), we can guarantee that leaves involved in rebalancing operations during a
delete contain between approximately 3

2a and 3a elements (since 3
2a < 2a − 1 < 5a−1

2 < 3a). Thus
a rebalancing operation will not be needed for at least 1

2a operations (1
2a deletions or a insertions).

4

Insert

Delete

Figure 5: Alternating insertion and deletion of the same element in an (2,3)-tree can cause Θ(loga N)
rebalancing operations each.

Therefore O(N/a) leaf rebalancing operations are needed during N operations. The result then
follows, since one such operations trivially can at most lead to O(loga N) rebalancing operations
on internal nodes.

As mentioned, a B-tree is basically just an (a, b)-tree with a, b = Θ(B). Sometimes, especially
in the context of external data structures, it can be useful to use variants of (a, b)-trees where the
constraints on the degree of internal nodes and on the number of elements in the leaves are not the
same. For the purpose of these notes we therefore define the following.

Definition 2 T is a B-tree with branching parameter b and leaf parameter k (b, k ≥ 8) if the
following conditions hold:

• All leaves of T are on the same level and contain between 1
4k and k elements.

• Except for the root, all nodes have degree between 1
4b and b

• The root has degree between 2 and b.

If we choose k = Ω(B) we obtain a B-tree that can be stored in a linear number of disk blocks.
By modifying the update algorithms as discussed above for the leaves as well as the nodes one level
above the leaves, we then obtain the following.

Theorem 1 An N -element B-tree T with branching parameter b and leaf parameter k = Ω(B)
uses O(N/B) space, has height O(logb

N
B), and the amortized number of internal node rebalancing

operations (split/fuse) needed after an update is O(1
b·k logb

N
B).

Corollary 1 A B-tree with branching parameter Θ(Bc), O < c ≤ 1, and leaf parameter Θ(B) uses
O(N/B) space, supports updates in O(logBc N) = O(logB N) I/Os and queries in O(logB N +T/B)
I/Os.

In internal memory, an N element search tree can be built in optimal O(N log N) time simply
by inserting the elements one by one. In external memory we would use O(N logB N) I/Os to
construct a B-tree using the same method. Interestingly, this is not optimal since sorting N
elements in external memory takes Θ(N

B logM/B
N
B) I/Os. We can construct a B-tree in the same

bound by first sorting the elements and then construct the tree level-by-level bottom-up.

Theorem 2 An N -element B-tree T with branching parameter b and leaf parameter k = Ω(B) can
be constructed in Θ(N

B logM/B
N
B) I/Os.

5

Remarks. B-trees with elements in the leaves, as the ones described here, are normally called
B+-trees in the database literature. Good references on B-tree variants and properties include [24,
36, 57]; (a, b)-tree properties are discussed extensively in [53]. As mentioned, a single update in an
(a, b)-tree with b = 2a − 1 can cause Θ(loga N) rebalancing operations. However, in an (a, b)-tree
with b ≥ 2a the number of rebalancing operations caused by an update can be reduced to O(1/a)
amortized [53]. In this note we only need the weaker O(1

a loga N) bound that is easy to shown for
b = 4a.

Recently, several alternative B-tree balancing schemes, such as weigh-balance [23] and level-
balance [1], as well as several B-tree extensions, such as persistent B-trees [39, 25, 77], buffer-
trees [13], and string B-trees [44], have been developed. In the following sections we discuss some
of these structures (weight-balanced B-trees, persistent B-trees, and buffer-trees).

3 Weight-balanced B-trees

The weight w(v) of node v in a search tree T is defined as the the number of elements in the leaves
of the subtree rooted in v. When secondary structures are attached to internal nodes, it is often
useful if rebalancing operations are not performed too often on heavy nodes. It is especially useful
to use a search tree where a node v of weight w(v) is only involved in a rebalancing operation once
for every Ω(w(v)) updates below it. Unfortunately, (a, b)-trees (and consequently B-trees) do not
have this property. Instead weight-balanced B-trees, balanced using weight constraints rather than
degree constraints, are used. Refer to Figure 6.

Definition 3 T is a weight-balanced B-tree with branching parameter b and leaf parameter k
(b, k ≥ 8) if the following conditions hold:

• All leaves of T are on the same level (level 0) and each leaf u has weight 1
4k ≤ w(u) ≤ k.

• An internal node v on level l has weight v(w) ≤ blk.

• Except for the root, an internal node v on level l has weight v(w) ≥ 1
4blk.

• The root has more than one child.

The weight constraints on nodes of a weight-balanced B-tree actually implies bounded de-
gree similar to a B-tree; a node minimally has degree 1

4blk/bl−1k = 1
4b and maximally degree

level l

level l − 1

1
4bl . . . blk

1
4bl−1k . . . bl−1k

Figure 6: Level l node in weight balanced B-tree has weight between 1
4blk and blk.

6

blk/1
4bl−1k = 4b. Thus a weight-balanced B-tree on N elements has height O(logb

N
k). Weight-

balanced B-tree are similar to normal B-trees in that all leaves are on the same level and, as we
will discuss below, rebalancing can be done by splitting and fusing nodes. However, in some sense
weight-balanced B-trees are more balanced than normal B-trees. While the children of a node v
on level l of a weight-balanced B-tree are of approximately the same weight Θ(bl−1k), their weight
can differ by an exponential factor in l in a B-tree.

To insert an element x in a weight-balanced B-tree T we first search down T for the relevant
leaf u and insert x. After this some of the nodes on the path from u to the root of T may be out
of balance, that is, a node on level l might have weight blk + 1 (leaf u can have weight b0k + 1).
To rebalance T we visit these O(logb N) nodes starting with u and working towards the root: If
a node node v on level l has weight blk + 1 we would like to split it into two nodes v ′ and v′′ of
weight b 1

2(blk + 1)c and d 1
2 (blk +1)e. However except for u, a perfect split is generally not possible

since we have to perform the split so that v ′ gets the, say i, first (leftmost) of v’s children and v ′′

gets the rest of the children. However, since nodes on level l − 1 have weight at most b l−1k ≤ 1
8blk,

we can always find an i such that if we split at the i’th child the weight of both v ′ and v′′ is between
1
2blk − bl−1k ≥ 3

8blk (> 1
4blk) and 1

2blk + bl−1k + 1 ≤ 5
8blk + 1 (< blk). Since the new nodes v′ and

v′′ are relatively rebalanced, Ω(blk) updates have to be performed below each such node before it
needs to be rebalanced again. More precisely, at least 1

8blk + 1 deletions or 3
8blk insertions have to

be performed below v′ or v′′ before they need to be rebalanced again.
Similarly, to perform a deletion we first delete x from the relevant leaf u. Then we rebalance

the relevant nodes on the path to the root of T . If a node v on level l has weight 1
4blk − 1 we fuse

it with one of its siblings. The resulting node v ′ has weight at least 1
4blk − 1 + 1

4blk = 1
2blk − 1 and

at most 1
4blk− 1+ blk = 5

4blk− 1. If v′ has weight greater than 7
8blk we split it into two nodes (and

thus effectively perform a share) with weight at least 7
16blk − bl−1k − 1 ≥ 5

16blk − 1 (> 1
4blk) and

at most 5
8blk + bl−1k ≤ 6

8blk < 7
8blk (< blk). Again Ω(blk) updates (1

8blk + 1 insertions or 1
16blk

deletions) need to be performed below a new node before it needs rebalancing.

Theorem 3 An N -element weight-balanced B-tree with branching parameter b and leaf parameter
k = Ω(B) uses O(N/B) space, has height O(logb

N
B), and the number of rebalancing operations

(splits of fuses) needed after an update is bounded by O(logb
N
B). Between two consecutive rebalanc-

ing operations on a node v, Ω(w(v)) updates have to be performed in leaves below v.

As a normal B-tree, we can construct a weight-balanced B-tree in Θ(N
B logM/B

N
B) I/Os by first

sorting the elements and then constructing the tree level-by-level bottom-up.

Corollary 2 A weight-balanced B-tree with branching parameter Θ(B c), 0 < c ≤ 1, and leaf
parameter Θ(B) uses O(N/B) space and can be constructed in Θ(N

B logM/B
N
B) I/Os. It supports

updates in O(logB N) I/Os and queries in O(logB N + T/B) I/Os.

Remarks. The weight-balance B-tree was introduced by Arge and Vitter [23]. The structure
resembles the k-fold tree of Willard [81]. It can be viewed as an external version of the BB[α]-
trees [63], which are binary and (normally) rebalanced using rotations and therefore not efficient
in external memory. Weight-balanced B-trees combines the useful properties of B-trees and BB[α]-
trees. They are defined using weight constraints like BB[α]-trees and therefore they have the useful
weight-property (node v of weight w(v) only rebalanced every Ω(w(v)) operations), while at the
same time being balanced using normal B-tree operations (splitting and fusion of nodes). Like

7

BB[α]-trees, the weight-property means that the weight-balanced B-tree can also be rebalanced
using partial-rebuilding (see e.g. [65]): Instead of splitting or fusing nodes on the path to the root
after performing an update in a leaf, we can simply rebuild the tree rooted in the highest unbalanced
node on this path. Since the (sub-) tree can easily be rebuilt in a linear number of I/Os we obtain
an O(logB N) amortized update bound.

4 Persistent B-trees

In some database applications one need to be able to update the current database while querying
both the current and earlier versions of the database (data structure). One simple but very ineffi-
cient way of supporting this functionality is to copy the whole data structure every time an update
is performed. Another and much more efficient way is through the (partially) persistent technique,
also sometimes referred to as the multiversion method. Instead of making copies of the structure,
the idea in this technique is to maintain one structure at all times but for each element keep track
of the time interval (existence interval) it is really present in the structure.

Definition 4 A persistent B-tree T with parameter b > 16 consists of a directed graph TG and a
B-tree TB with the following properties:

• Each node of TG contains a number of elements each augmented with an existence interval
defined by an insertion and a deletion time (or version).

• For any time/version t, the nodes of TG with at least one element with existence interval
containing t form a B-tree with leaf and branching parameter b.

• TB is a B-tree with leaf and branching parameter b on the indegree 0 node (roots) of TG
ordered by minimal existence interval beginning time (insert version).

If we use b = B, we can easily query any version of a persistent B-tree in O(logB N + T/B)
I/Os: To perform a query at time t, we simply find the appropriate root node in TG using TB and
then we perform the search in TG as in a normal B-tree. Below we discuss how to update the most
recent (the current) version of a persistent B-tree efficiently. We will say that an element is alive
at time t (version t) if t is in its existence interval; otherwise we call it dead. In order to insure
linear space use, we will maintain the new-node invariant that whenever a new node is created it
contains between 3

8b and 7
8b alive elements (and no dead elements); note that this also means that

its a valid parameter b B-tree node.
To insert a new element x in the current version t of a persistent B-tree we first search for

the relevant leaf u (in the B-tree defined by TG at time t) and insert x. If u now contains b + 1
elements (dead or alive) we perform a version-split : We make a copy of the alive elements in u
and mark all elements in u as deleted at time t (i.e. we delete u from the B-tree “embedded” in
T at the current time). If the number of copied elements is between 3

8b and 7
8b we then simply

create one new leaf node u′ with these elements and recursively update parent(u) by persistently
deleting the reference to u (as described below) and inserting a reference to u ′. If the number of
copied elements is greater than 7

8b we instead create two new leaves u′ and u′′ with approximately
half of the elements each, and update parent(u) recursively in the appropriate way. The two new
leaves u′ and u′′ both contain at most d b+1

2 e < 7
8b elements and more than b 1

2
7
8bc > 3

8b elements so
the new-node invariant is fulfilled. Note now this corresponds to a split in an (a, b)-tree. Finally,

8

if the number of copied elements is smaller than 3
8b we perform a version-split on a sibling u to

obtain between 1
4b and b other alive elements, for a total of between 1

4b + 1
4b = 1

2b and 3
8b+ b = 11

8 b
elements. If we have less than 7

8a elements we simply create a new leaf node u′. Otherwise, we
create two new leaves u′ and u′ containing between b 1

2
7
8bc > 3

8b and d1
2

11
8 be < 7

8b elements (perform
a split). This way the new-node invariant is fulfilled. Finally, we recursively update parent(u)
appropriately. The first case corresponds to a fuse in the B-tree embedded in T at time t, while the
second corresponds to a share. It is easy to see that nodes of TG with live elements at the current
time form a B-tree with leaf and branching parameter b, that is, that T is a correct persistent
B-tree.

A deletion is handled similarly to an insertion. First we find the relevant element x in a leaf
u and mark it as deleted. This may result in u containing 1

4b − 1 alive elements and therefore we
perform what corresponds to a fuse or share as previously: We perform a version-split on u and
one of its siblings to obtain a total of between 1

4b + 1
4b − 1 = 1

2b − 1 and b + 1
4b − 1 = 5

4b − 1
alive elements. We then either create a new leaf u′ with the obtained elements, or split them and
create two new leaves u′ and u′′ precisely as previously, fulfilling the new-node invariant. We also
recursively update parent(u) as previously. Again it is easy to see that T is a correct persistent
B-tree after the deletion.

An insertion or deletion after N operations on an initially empty persistent B-tree performs
O(logb N) rebalancing operations since the rebalancing at most propagates from u to the root of
the B-tree corresponding to the current version. To see that the update algorithms (the new-node
invariant) ensure linear space use, first note that a rebalance operation on a leaf creates at most two
new leaves. Once a new leaf u′ is created, at least 1

8b updates have to be performed on u′ before a
rebalance operation is needed on it again. Thus at most 2 N

b/8 leaves are created during N updates.

Similarly, we can argue that the number of leaf version-splits during N updates is 2 N
b/8 (two version

splits might only create one new leaf). Each time a leaf is created or a leaf version-split performed, a
corresponding insertion or deletion is performed recursively one level up the tree. Thus by the same
argument the number of nodes created one level up the tree is bounded by 22 N

(1
8
b)2

. By induction,

the number of nodes created l levels up the tree is bounded by 2l+1 N
(1
8
b)l+1 . The total number of

nodes constructed over N updates is therefore bounded by 2N
1
8
b

∑logB N
l=0 (2

1
8
b
)l, which is O(N

b) since

b > 16.

Theorem 4 A persistent B-tree with parameter Θ(B) can be implemented such that after N inser-
tions and deletions in an initially empty structure, it uses O(N/B) space and supports range queries
in any version in O(logB N + T/B) I/Os. An update can be performed on the newest version in
O(logB N) I/Os.

Remarks. General techniques for making data structures persistent were developed by Driscoll
et al. [39]; see also [72]. They can be used to develop persistent B-trees. Partially persistent B-trees
(and in general partially persistent structures) are sometimes referred to as multiversion B-trees
(multiversion structures) [25, 77]. Our description of persistent B-trees follow that of Arge et al. [14]
and Becker et al. [25].

Several times in later sections we will construct a data structure by performing N insertions
and deletions on an initially empty persistent B-tree, and then use the resulting (static) structure
to answer queries. Using the update algorithms discussed in this section the construction takes
O(N logB N) I/Os. Unlike B-trees and weight-balanced B-trees, it seems hard to construct the

9

structure efficiently bottom-up. However, as discussed in the next section, the so-called buffer-
tree technique can be used to improve the O(N logB N) bound to O(N

B logM/B
N
B). Utilizing the

distribution-sweeping technique, Goodrich et al. [47] showed how to construct a persistent B-tree
structure (different from the one described above) in the same bound.

The persistent B-tree as described, as well as the structure by Goodrich et al. [47], requires that
every pair of elements in the structure are comparable—even a pair of elements not present in the
structure at the same time. This sometimes create problems, e.g. when working with geometric
objects (such as line segments). Arge et al. [14] described a modified version of the persistent
B-tree that only requires that elements present at the same time are comparable. Unfortunately,
this structure cannot be constructed efficiently using the buffer-tree technique.

5 Buffer trees

In internal memory we can sort N elements in optimal O(N log N) time using Θ(N) operations
on a dynamic balanced search tree. Using the same algorithm and a B-tree in external memory
results in an algorithm using O(N logB N) I/Os. This is a factor of

B logB N
logM/B(N/B) from optimal.

In order to obtain an optimal sorting algorithm we need a search tree that supports updates in
O(1

B logM/B
N
B) I/Os. In general, if we were able to perform insertions on various structures,

for example on a persistent B-tree, in O(1
B logM/B

N
B) I/Os, we would be able to construct the

structures in the optimal O(N
B logM/B

N
B) I/Os simply by performing N insertions. In this section

we discuss the buffer tree technique that can be used to obtain this bound amortized by introducing
“laziness” in the update algorithms and utilizing the large main memory to process (portions of)
a large number of updates simultaneously.

O(logM/B
N
B

)

M elements

B

M/B

Figure 7: Buffer tree.

The basic buffer tree is simply a B-tree with branching parameter M/B and leaf parameter B,
where each internal node has been augmented with a buffer of size M . Refer to Figure 7. The idea
is then to perform operations in a “lazy” manner using the buffers. For example, to perform an
insertion we do not search all the way down the tree for the relevant leaf. Instead, we simply insert
it in the buffer of the root. When a buffer “runs full” the elements in the buffer are then “pushed”
one level down to buffers on the next level. We can perform such a buffer-emptying process in
O(M/B) I/Os since the elements in the buffer fit in main memory and the fan-out of the tree is
O(M/B). If the buffer of any of the nodes on the next level becomes full by this process, the
buffer-emptying process is applied recursively. Since we push Θ(M) elements one level down the
tree using O(M/B) I/Os (that is, we use O(1) I/Os to push one block one level down), we can argue
that every block of elements is touched a constant number of times on each of the O(logM/B

N
B)

10

levels of the tree. Thus, disregarding rebalancing, inserting N elements requires O(N
B logM/B

N
B)

I/Os in total. Below we discuss the buffer technique in more detail and show how to perform both
insertions and deletions. Note that as a result of the laziness, we can have several insertions and
deletions of the same element in the tree at the same time and we therefore “time stamp” elements
when they are inserted in the root buffer.

Definition 5 A basic buffer tree T is

• A B-tree with branching parameter M
B and leaf parameter B where;

• Each internal node has a buffer of size M .

We perform an insertion or deletion on a buffer tree T as follows: We construct an element
consisting of the element in question, a time stamp, and an indication of whether the element
corresponds to an insertion or a deletion. When we have collected B such elements in internal
memory we insert them in the buffer of the root. If this buffer now contains more than M elements
we perform a buffer-emptying process. During such a process, and the resulting recursive buffer-
emptying processes, buffers can contain many more than M elements (when many elements from
a buffer is distributed to the same child). However, by distributing elements in sorted order, we
maintain that a full buffer consists of at most M unsorted elements followed by a list of sorted
elements; it can thus be sorted in a linear number of I/Os by first loading and sorting the M
unsorted elements and then merging them with the list of sorted elements. We perform buffer-
emptying processes differently on internal nodes (nodes that do not have leaves as children) and on
leaf nodes. On internal nodes we basically proceed as described above: We first sort the elements
while removing corresponding insert and delete element (with time stamps in the correct order).
Then we in a simple scan distribute the remaining elements to buffers one level down. Finally, we
apply the buffer-emptying process on children with full buffers, provided they are internal nodes. We
proceed to empty leaf node buffers only after finishing all internal node buffer-emptying processes.
The reason is of course that a buffer-emptying process on a leaf node may result in the need for
rebalancing. By only emptying leaf nodes after all internal node buffer-emptying processes have
been performed we prevent rebalancing and buffer-emptying processes from interfering with each
other.

We empty all relevant leaf nodes buffers one-by-one while maintaining the leaf-emptying invari-
ant that all buffers of nodes on the path from the root of T to a leaf node with full buffer are
empty. The invariant is obviously true when we start emptying leaf buffers. To empty the buffer of
a leaf node v we first sort the buffer while removing matching inserts and deletes as in the internal
node case. Next we merge this list with the elements in the, say k, leaves below v, again removing
matching elements. Then we replace the elements in the k leaves with the resulting set of sorted
elements (and update the “routing elements” in v). If we do not have enough elements to fill the k
leaves we instead insert “placeholder-elements”. If we have more than enough elements, we insert
the remaining elements one-by-one and rebalance the B-tree. We can rebalance as normally using
splits (Figure 3), since the leaf-emptying invariant insures that all nodes from u to the root of T
have empty buffers.

After we have emptied all leaf-node buffers we remove the placeholder-elements one-by-one. We
do so basically as in a normal B-tree, except that we slightly modify the rebalancing operations.
Recall that rebalancing after a delete in a leaf u involves fusing (Figure 4) a number of nodes on
the path to the root of T with one of their siblings (possibly followed by a split). The leaf-emptying

11

invariant ensures that a node v on the path from u to the root has an empty buffer, but its siblings
may not have empty buffers. Therefore we perform a buffer-emptying processes on v’s (one or two)
immediate sibling(s) before performing the actual fuse. The emptying of the buffer of a sibling
node v′ can result in leaf node buffer’s running full; in such cases the leaf-emptying invariant is
still fulfilled since all nodes on the path from the parent of v ′ have empty buffers (since it is also
the parent of v). We empty all relevant buffers, excluding leaf-node buffers, before performing the
fuse on v. Note that the special way of handling deletes with placeholder-elements ensures that
we are only in the process of handling (rebalancing after) one delete operation at any given time
(insert rebalancing, splits, after a leaf buffer emptying cannot result in buffer-emptying processes).
Note also that we empty the buffers of both immediate siblings of v because insert rebalancing may
result in one (but not both) of them not having the same parent as v (if the parent of v splits).

A buffer-emptying process on a node containing X elements, not counting recursive buffer-
emptyings or rebalancing, takes O(X/B + M/B) I/Os: Scanning the X elements takes O(X/B)
I/Os and distributing them to the Θ(M/B) buffers one level down (in the internal node case) or
scanning the Θ(M) elements below it (in the leaf node case) takes another O(X/B + M/B) I/O.
Thus the cost of emptying a full buffer is O(X/B + M/B) = O(X/B) I/Os, and the argument in
the beginning of this chapter can be used to show that the total cost of all full buffer-emptying,
not counting rebalancing, is O(N

B logM/B
N
B) I/Os. By Theorem 1 the total number of internal

node rebalancing operations performed during N updates is O(N
B·M/B logM/B

N
B). Since each such

operation takes O(M/B) I/Os (to empty a non-empty buffer), the total cost of the rebalancing is
also O(N

B logM/B
N
B) I/Os.

Theorem 5 The total cost of a sequence of N update operation on an initially empty buffer tree
is O(N

B logM/B
N
B) I/Os.

In order to use the buffer tree in a simple sorting algorithm we need an empty operation that
empties all buffers and then reports the elements in the leaves in sorted order. All buffers can be
emptied simply by performing a buffer-emptying process on all nodes in the tree in BFS order. As
emptying one buffer costs O(M

B) I/Os (not counting recursive processes), and as the total number
of buffers in the tree is O(N

B /M
B), we obtain the following.

Theorem 6 The total cost of emptying all buffers of a buffer tree after performing N updates on
it is O(N

B logM/B
N
B) I/Os.

Corollary 3 A set of N elements can be sorted in O(N
B logM/B

N
B) I/Os using a buffer tree.

Using the buffer tree techniques, a persistent B-tree can be constructed efficiently (while not
performing queries), simply by performing the N updates using buffers and then empty all the
buffers as above.

Corollary 4 A sequence of N updates can be performed on an initially empty persistent B-tree
(the tree can be constructed) in O(N

B logM/B
N
B) I/Os.

The buffer tree technique can also be used to develop an efficient priority queue structure. A
search tree structure can normally be used to implement a priority queue because the smallest
element in a search tree is in the leftmost leaf. The same strategy cannot immediately be used on
the buffer tree, since the smallest element is not necessarily stored in the leftmost leaf—smaller

12

elements could reside in buffers of the nodes on the leftmost root-leaf path. However, there is a
simple strategy for performing a deletemin operation in the desired amortized I/O bound. We
simply perform a buffer-emptying process on all nodes on the path from the root to the leftmost
leaf using O(M

B · logM/B
M
B) I/Os amortized. Then we delete the Θ(M

B ·B) smallest elements stored
in the children (leaves) of the leftmost leaf node and keep them in internal memory. This way
we can answer the next Θ(M) deletemin operations without performing any I/Os. Of course we
then also have to update the minimal elements in internal memory as insertions and deletions are
performed, but we can do so in a straightforward without performing extra I/Os. Thus, since we
use O(M

B logM/B
N
B) I/Os to perform Θ(M) deletemin operations, we obtain the following.

Theorem 7 Using O(M) internal memory, an arbitrary sequence of N insert, delete and deletemin
operations on an initially empty buffer tree can be performed in O(N

B logM/B
N
B) I/Os.

Remarks. The buffer tree technique was developed by Arge [13] who also showed how the basic
buffer tree can support (one-dimensional) range queries in O(1

B logM/B
N
B + T

B) I/Os amortized.
The range queries are batched in the sense that we do not obtain the result of a query immediately;
instead parts of the result will be reported at different times as the query is pushed down the tree.
Arge [13] also showed how to implement a buffered segment tree. The buffer tree based priority
queue was described by Arge [13]. Note that in this case queries (deletemins) are not batched.
By decreasing the fan-out and the size of buffers to Θ((M/B)c) for some 0 < c ≤ 1 the buffer
tree priority queue can be modified to use only Θ((M/B)c) rather than Θ(M/B) blocks in internal
memory. This is useful in applications that utilize more than one priority queue (see, e.g., [22]).
Using the buffer technique on a heap, Fadel et al. [43] and Kumar and Schwabe [60] developed
alternative external priority queues. Using a partial rebuilding idea, Brodal and Katajainen [29]
developed a worst-case efficient external priority queue, that is, a structure where a sequence of
B operations requires O(logM/B

N
B) I/Os worst-case. Using the buffer tree technique on a tourna-

ment tree, Kumar and Schwabe [60] developed a priority queue supporting update operations in
O(1

B log N
B) I/Os amortized. Note that if the key of an element to be updated is known, the update

can be performed in O(1
B logM/B

N
B) I/Os on a buffer tree using a deletion and an insertion. The

buffer tree technique has also been used on several other data structures, such as SB-trees [16] and
R-trees [17, 75].

6 Dynamic interval stabbing: External interval tree

After considering simple one-dimensional problems, we now turn to higher-dimensional problems.
In this section we consider the “1.5-dimensional” interval stabbing problem: We want to maintain
a dynamically changing set of (one-dimensional) intervals I such that given a query point q we can
report all T intervals containing q efficiently.

The static version of the stabbing problem (where the set of intervals is fixed) can easily be
solved I/O-efficiently using a sweeping idea and a persistent B-tree. Consider sweeping the N
intervals in I along the x-axis starting at −∞, inserting each interval in a B-tree when its left
endpoint is reached, and deleting it again when its right endpoint is reached. To answer a stabbing
query with q we simply have to report all intervals in the B-tree at “time” q—refer to Figure 8.
Thus by Theorem 4 and Corollary 4 we have the following.

13

Theorem 8 A static set of N intervals can be stored in a linear space data structures such that
a stabbing query can be answered in O(logB N + T/B) I/Os. The structure can be constructed in
O(N

B logM/B
N
B) I/Os.

q

Figure 8: Static solution to stabbing query problem using persistence.

In internal memory, the dynamic interval stabbing problem is solved using an interval tree. Such
a tree consists of a binary base tree T on the sorted set of interval endpoints, with the intervals
stored in secondary structures associated with internal nodes of the tree. An interval Xv consisting
of all endpoints below v is associated with each internal node v in a natural way. The interval Xr

of the root r of T is thus divided in two by the intervals Xvl
and Xvr associated with its two

children vl and vr, and an interval is stored in r if it contains the “boundary” between Xvl
and

Xvr (if it overlaps both Xvl
and Xvr). Refer to Figure 9. Intervals on the left (right) side of

the boundary are stored recursively in the subtree rooted in vl (vr). Intervals in r are stored in
two structures: A search tree sorted according to left endpoints of the intervals and one sorted
according to right endpoints. A stabbing query with q is answered by reporting the intervals in r
containing q and recursively reporting the relevant intervals in the subtree containing q. If q is
contained in Xvl

, the intervals in r containing q are found by traversing the intervals in r sorted
according to left endpoints, from the intervals with smallest left endpoints toward the ones with
largest left endpoints, until an interval not containing q is encountered. None of the intervals in
the sorted order after this interval can contain q. Since O(Tr) time is used to report Tr intervals in
r, a query is answered in O(log2 N + T) time in total.

Figure 9: Internal interval tree and examples of intervals stored in secondary structures of the root.

A first natural idea to make the interval tree I/O-efficient is to group nodes in T together into
small trees of height Θ(log B) (Θ(B) nodes) and storing them together on disk, effectively obtaining
a tree with fanout Θ(B). This way a root-leaf path can be traversed in O(logB N) I/Os. However,
to answer a query we may still use O(log N) I/Os to query the O(log N) secondary structures on
a root-leaf path. Below we show how to modify the structure further in order to overcome this
problem, obtaining an external interval tree.

14

Structure. An external interval tree on I consists of a weight-balanced B-tree with branching
parameter 1

4

√
B and leaf parameter B (Corollary 2) on the O(N) sorted endpoints of intervals in

I. This base tree T tree has height O(log√
B N) = O(logB N). As in the internal case, with each

internal node v we associate an interval Xv consisting of all endpoints below v. The interval Xv is
divided into at most

√
B subintervals by the intervals associated with the children v1, v2, . . . of v.

Refer to Figure 10. For illustrative purposes, we call the subintervals slabs and the left (right)
endpoint of a slab a slab boundary. We define a multislab to be a contiguous range of slabs, such
as for example Xv2Xv3Xv4 in Figure 10. In a node v of T we store intervals from I that cross one
or more of the slab boundaries associated with v, but none of the slab boundaries associated with
parent (v). In a leaf u we store intervals with both endpoints among the endpoints in u; we assume
without loss of generality that the endpoints of all intervals in I are distinct, such that the number
of intervals stored in a leaf is less than B/2 and can therefore be stored in one block. We store
the set of intervals Iv ⊂ I associated with v in the following Θ(B) secondary structures associated
with v.

• For each of O(
√

B) slab boundaries bi we store

– A right slab list Ri containing intervals from Iv with right endpoint between bi and bi+1.
Ri is sorted according to right endpoints.

– A left slab list Li containing intervals from Iv with left endpoint between bi and bi−1.
Li is sorted according to left endpoints.

– O(
√

B) multislab lists—one for each boundary to the right of bi. The list Mi,j for
boundary bj (j > i) contains intervals from Iv with left endpoint between bi−1 and bi

and right endpoint between bj and bj+1. Mi,j is sorted according to right endpoints.

• If the number of intervals stored in a multislab list Mi,j is less than Θ(B), we instead store
them in an underflow structure U along with intervals associated with all the other multislab
lists with fewer than Θ(B) intervals. More precisely, only if more than B intervals are
associated with a multislab do we store the intervals in the multislab list. Similarly, if fewer
than B/2 intervals are associated with a multislab, we store the intervals in the underflow
structure. If the number of intervals is between B/2 and B they can be stored in either the
multislab list or in the underflow structure. Since O((

√
B)2) = O(B) multislabs lists are

associated with v, the underflow structure U always contains fewer than B 2 intervals.

We implement all secondary list structures associated with v using B-trees with branching and
leaf parameter B (Corollary 1), and the underflow structure using the static interval stabbing
structure discussed above (Theorem 8). In each node v, in O(1) index blocks, we also maintain
information about the size and place of each of the O(B) structures associated with v.

With the definitions above, an interval in Iv is stored in two or three structures: Two slab lists
Li and Rj and possibly in either a multislab list Mi,j or in the underflow structure U . For example,
we store interval s in Figure 10 in the left slab list L2 of b2, in the right slab list R4 of b4, and in
either the multislab list M2,4 corresponding to b2 and b4 or the underflow structure U . Note the
similarity between the slab lists and the two sorted lists of intervals in the nodes of an internal
interval tree. As in the internal case, s is stored in a sorted list for each of its two endpoints. This
represents the part of s to the left of the leftmost boundary contained in s, and the part to the
right of the rightmost boundary contained in s. Unlike in the internal case, in the external case we

15

also need to represent the part of s between the two extreme boundaries. We do so using one of
O(B) multislab lists.

v

v1 v2 v3 v4 v5

Xv

Xv2 Xv3 Xv4 Xv5

s

Xv1

b1 b2 b3 b4 b5 b6 bi+1qbi

Figure 10: A node in the base tree. In-
terval s is stored in L2, R4, and either
M2,4 or U .

Figure 11: Intervals containing q
are stored in Rbi

, Lbi+1
, the mul-

tislab lists spanning the slab, and
U .

The external interval tree uses linear space: The base tree T itself uses O(N/B) space and
each interval is stored in a constant number of linear space secondary structures (Corollary 1 and
Theorem 8). The number of other blocks used in a node is O(

√
B): O(1) index blocks and one

block for the underflow structure and for each of the 2
√

B slab lists. Since T has O(N/(B
√

B))
internal nodes, the structure uses a total of O(N/B) blocks. Note that if we did not store the
sparse multislab lists in the underflow structure, we could have Ω(B) sparsely utilized blocks in
each node, which would result in a super-linear space bound.

Query. In order to answer a stabbing query q, we search down T for the leaf containing q,
reporting all relevant intervals among the intervals Iv stored in each node v encountered. Assuming
q lies between slab boundaries bi and bi+1 in v, we report the relevant intervals by loading the O(1)
index blocks and then proceeding as follows: We first report intervals in all multislab lists containing
intervals crossing bi and bi+1, that is, multislab lists Ml,k with l ≤ i and k > i. Then we perform
a stabbing query with q on the underflow structure U and report the result. Finally, we report
intervals in Ri from the largest toward the smallest (according to right endpoint) until we encounter
an interval not containing q, and intervals in Li+1 from the smallest toward the largest until we
encounter an interval not containing q. It is easy to see that our algorithm reports all intervals in
Iv containing q: All relevant intervals are either stored in a multislab list Ml,k with l ≤ i < k, in
U , in Ri, or in Li+1. Refer to Figure 11. We correctly reports all intervals in Ri containing q, since
if an interval in the right-to-left order of this list does not contain q, then neither does any other
interval to the left of it. A similar argument holds for the left-to-right search in Li+1.

That the query algorithm uses O(logB N+T/B) I/Os can be seen as follows. We visit O(logB N)
nodes in T . In each node v we use O(1) I/Os to load the index blocks and O(1 + Tv/B) I/Os to
query the two slab list Ri and Li+1, where Tv is the number of intervals reported in v; there is no
O(logB N)-term since we do not search in the lists. Since each visited multislab list contains Ω(B)
intervals, we also use O(Tv/B) I/Os to visit these lists. Note how U is crucial to obtain this bound.
Finally, we use O(logB B2 + Tv/B) = O(1 + Tv/B) I/Os to query U . Overall, we use O(1 + Tv/B)
I/Os in node v, for a total of O(

∑

v(1 + Tv/B)) = O(logB N + T/B) I/Os to answer a query.
Updates. To insert or delete an interval s in the external interval tree, we first update the

base tree, that is, we insert or delete the two relevant endpoints. Next we update the secondary

16

structures by first searching down T to find the first node v where s contains one or more slab
boundaries; there we load the O(1) index blocks of v. If performing an insertion, we insert s into the
two relevant slab lists Li and Rj. If the multislab list Mi,j exists, we also insert s there. Otherwise,
the other intervals (if any) corresponding to Mi,j are stored in the underflow structure U and we
insert s in this structure. If that brings the number of intervals corresponding to Mi,j up to B,
we delete them all from U and insert them in Mi,j . Similarly, if performing a deletion, we delete s
from two slab lists Li and Rj . We also delete s from U or Mi,j; if s is deleted from Mi,j and the
list now contains B/2 intervals, we delete all intervals in Mi,j and insert them into U . Finally, we
update and store the index blocks.

Disregarding the update of the base tree T , the number of I/Os needed to perform an update
can be analyzed as follows: For both insertions and deletions we use O(logB N) I/Os to search
down T , and then in one node we use O(logB N) I/Os to update the secondary list structures.
We may also update the underflow structure U , which is static since it it based on persistence.
However, since U has size O(B2) we can use global rebuilding to make it dynamic: We simply store
updates in a special “update block” and once B updates have been collected we rebuild U using
O(B2

B logM/B
B2

B) = O(B) I/Os (Theorem 8), or O(1) I/Os amortized. We continue to be able to
answer queries on U efficiently, since we only need to use O(1) extra I/Os to check the update
block. Thus the manipulation of the underflow structure U uses O(1) I/Os amortized, except in
the cases where Θ(B) intervals are moved between U and a multislab list Mi,j. In this case we
use O(B) I/Os but then there must have been at least B/2 O(1) I/O updates involving intervals
in Mi,j since the last time an O(B) cost was incurred. Hence the amortized I/O cost is O(1) and
overall the update is performed in O(logB N) I/Os.

Now consider the update of the base tree T , which takes O(logB N) I/Os (Corollary 2), except
that we have to consider what happens to the secondary structures when we perform a rebalancing
operation (split or fuse) on base tree node v. Figure 12 illustrates how the slabs associated with
v are affected when v splits into nodes v ′ and v′′: All the slabs on one side of a slab boundary b
get associated with v′, the boundaries on the other side of b get associated with v ′′, and b becomes
a new slab boundary in parent (v). As a result, all intervals in the secondary structures of v that
contain b need to be inserted into the secondary structures of parent (v). The rest of the intervals
need to be stored in the secondary structures of v ′ and v′′. Furthermore, as a result of the addition
of the new boundary b, some of the intervals in parent (v) containing b also need to be moved to
new secondary structures. Refer to Figure 13.

First consider the intervals in the secondary structures of v. Since each interval is stored in a
left slab list and a right slab list, we can collect all intervals containing b (to be moved to parent (v))
by scanning through all of v’s slab lists. We first construct a list Lr of the relevant intervals sorted
according to right endpoint by scanning through the right slab lists. We scan through each right
slab list (stored in the leaves of a B-tree) of v in order, starting with the rightmost slab boundary,
adding intervals containing b to Lr. This way Lr will automatically be sorted. We construct a list
Ll sorted according to left endpoint by scanning through the left slab lists in a similar way. Since
the secondary structures of v contain O(w(v)) intervals (they all have an endpoint below v), and
since we can scan through each of the O(

√
B) slab lists in a linear number of I/Os, we construct

Lr and Ll in O(
√

B + w(v)/B) = O(w(v)) I/Os. Next we construct the slab lists of v ′ and v′′,
simply by removing intervals containing b from each slab list of v. We remove the relevant intervals
from a given slab list by scanning through the leaves of its B-tree, collecting the intervals for the
new list in sorted order, and then constructing a new list (B-tree). This way we construct all the

17

v’

v

b

b

v’’

bi

b

bi+1

v

Figure 12: Splitting a node. v splits
along b, which becomes a new boundary
in parent (v).

Figure 13: All solid intervals need to
move. Intervals in v containing b move
to parent(v) and some intervals move
within parent(v).

slab lists in O(w(v)) I/Os. We construct the multislab lists for v ′ and v′′ simply by removing all
multislabs lists containing b. We can do so in O(w(v)) I/Os. We construct the underflow structures
for v′ and v′′ by first scanning through the underflow structure for v and collecting the intervals
for the two structures, and then constructing them individually using O(w(v)/B) = O(w(v)) I/Os
(Theorem 8). We complete the construction of v ′ and v′′ in O(w(v)) I/Os by scanning though the
lists of each of the nodes, collecting the information for the index blocks.

Next consider parent (v). We need to insert the intervals in Ll and Lr into the secondary
structures of parent (v) and move some of the intervals already in these structures. The intervals
we need to consider all have one of their endpoints in Xv. For simplicity we only consider intervals
with left endpoint in Xv; intervals with right endpoint in Xv are handled similarly. All intervals
with left endpoint in Xv that are stored in parent (v) cross boundary bi+1. Thus we need to consider
each of these intervals in one or two of

√
B + 1 lists, namely, in the left slab list Li+1 of bi+1 and

possibly in one of O(
√

B) multislab lists Mi+1,j . When introducing the new slab boundary b, some
of the intervals in Li+1 need to be moved to the new left slab list of b. In a scan through Li+1

we collect these intervals in sorted order using O(|Xv |/B) = O(w(v)/B) = O(w(v)) I/Os. The
intervals in Ll also need to be stored in the left slab list of b, so we merge Ll with the collected
list of intervals and construct a B-tree on the resulting list. We can easily do so in O(w(v)) I/Os
and we can update Li+1 in the same bound. Similarly, some of the intervals in multislab lists
Mi+1,j need to be moved to new multislab lists corresponding to multislabs with b as left boundary
instead of bi+1. We can easily move the relevant intervals (and thus construct the new multislab
lists) in O(w(v)) I/Os using a scan through the relevant multislab lists, similarly to the way we
moved intervals from the left slab list of bi+1 to the left slab list of b. (Note that intervals in the
underflow structure do not need to be moved). If any of the new multislab lists contain fewer than
B/2 intervals, we instead insert the intervals into the underflow structure U . We can easily do so
in O(B) = O(w(v)) I/Os by rebuilding U . Finally, to complete the split process we update the
index blocks of parent (v).

To summarize, we can split a node v in O(w(v)) I/Os. By Theorem 3, we know that when

18

performing a split on v (during an insertion) Ω(w(v)) updates must have been performed below v
since it was last involved in a rebalance operation. Thus the amortized cost of a split is O(1) I/Os.
Since O(logB N) nodes split during an insertion (Theorem 3), the update of the base tree T during
an insertion can therefore be performed in O(logB N) I/Os amortized. We can analyze the cost of
deleting two endpoints in a similar way by considering the cost of fusing two nodes. However, deletes
can also be handled in a simpler way using global rebuilding: Instead of deleting the endpoints, we
just mark the two endpoints in the leaves of T as deleted. This does not increase the number of I/Os
needed to perform a later update or query operation, but it does not decrease it either. Therefore
we periodically rebuild the structure completely. Let N0 be the number of points in T just after
such a rebuild. As long as N0 = Θ(N) the query bound remains O(logB N + T/B). After N0/2
deletions have been performed we rebuild the structure in O(N0 logB N0) = O(N logB N)I/Os,
leading to an O(logB N) amortized delete I/O bound: We scan through the leaves of the old base
tree and construct a sorted list of the undeleted endpoints. We then use this list to construct the
new base tree. All of this can be done in O(N0/B) I/Os. Finally, we insert the O(N) intervals
one-by-one without rebalancing the base tree using O(N) · O(logB N0) I/Os.

Theorem 9 An external interval tree on a set of N intervals uses O(N/B) space and answers
stabbing queries in O(logB N+T/B) I/Os. Updates can be performed in O(logB N) I/Os amortized.

Remarks. The internal memory interval tree was developed by Edelsbrunner [40, 41]. The ex-
ternal interval tree as described here was developed by Arge and Vitter [23] following earlier at-
tempts by several authors [55, 73, 67, 28, 54]. The global rebuilding ideas used in the structure is
due to Overmars [65]. The amortized update bounds can be made worst-case using standard lazy-
rebuilding techniques also due to Overmars [65]. Variants of the external interval tree structure—as
well as experimental results on applications of it in isosurface extraction—have been considered by
Chiang and Silva [33, 35, 34]. The structure also forms the basis for several external planar point
location structures [1, 21].

The external interval tree illustrates some of the problems encountered when trying to map
multilevel internal memory structures to external memory, mainly the problems encountered when
needing to use multi-way trees as base trees, as well as the techniques commonly used to overcome
these problems: The multilevel base tree resulted in the need for multislabs. To handle multislabs
efficiently we used the notion of underflow structure, as well as the fact that we could decrease the
fan-out of T to Θ(

√
B) while maintaining the O(logB N) tree height. The underflow structure—

implemented using sweeping and a persistent B-tree—solved a static version of the problem on
O(B2) interval in O(1 + Tv/B) I/Os. The structure was necessary since if we had just stored the
intervals in multislab lists we might have ended up spending Θ(B) I/Os to visit the Θ(B) multislab
lists of a node without reporting more than O(B) intervals in total. This would have resulted in
an Ω(B logB N + T/B) query bound. We did not store intervals in multislab lists containing Ω(B)
intervals in the underflow structure, since the I/Os spent on visiting such lists during a query can
always be charged to the O(Tv/B)-term in the query bound. The idea of charging some of the
query cost to the output size is often called filtering [31], and the idea of using a static structure
on O(B2) elements in each node has been called the bootstrapping paradigm [79]. Finally, we used
weight-balancing and global rebuilding to obtain efficient update bounds.

19

��
��

�� ��
�	
�

�����

������ ���� ��
��

 !
"#

q1

q3

q2

$% &'()
*+

,- ./01

23
45 (q,q)

(q,q)

Figure 14: 3-sided query. Figure 15: Diagonal corner query.

7 3-sided planar range searching: External priority search tree

We now move on and consider the special case of planar orthogonal range searching called 3-sided
planar range searching : Maintain a set S of point in the plane such that given a 3-sided query
q = (q1, q2, q3) we can report all points (x, y) ∈ S with q1 ≤ x ≤ q2 and y ≥ q3. Refer to Figure 14.
This problem is actually a generalization of the interval stabbing problem, since interval stabbing is
equivalent to performing diagonal corner queries on a set of points in the plane: Consider mapping
an interval [x, y] to the point (x, y) in the plane. Finding all intervals containing a query point q
then corresponds to finding all points (x, y) such that x ≤ q and y ≥ q. Refer to Figure 15.

Like in the interval stabbing case, the static version of the 3-sided range searching problem
can easily be solved using a persistent B-tree. This time we imagine sweeping the plane with a
horizontal line from y = ∞ to y = −∞ and inserting the x-coordinate of points from S in a
persistent B-tree as they are met. To answer a query q = (q1, q2, q3) we perform a one-dimensional
range query [q1, q2] on the B-tree at “time” q3. This way we obtain the following (Theorem 4 and
Corollary 4).

Theorem 10 A static set of N points in the plane can be stored in a linear space data structures
such that a 3-sided range query can be answered in O(logB N + T/B) I/Os. The structure can be
constructed in O(N

B logM/B
N
B) I/Os.

A dynamic solution to the 3-sided range query problem can be obtained using an external
priority search tree.

Structure. An external priority search tree consists of a weight-balanced base B-tree T with
branching parameter 1

4B and leaf parameter B on the x-coordinates of the points in S. As in the
interval tree case, each internal node v corresponds naturally to an x-range Xv , which is divided
into Θ(B) slabs by the x-ranges of its children. In each node v we store O(B) points from S for
each of its Θ(B) children vi, namely the B points with the highest y-coordinates in the x-range
Xvi of vi (if existing) that have not been stored in ancestors of v. We store the O(B 2) points in
the linear space static structure discussed above—the “B2–structure”—such that a 3-sided query
on the points can be answered in O(logB B2 + Tv/B) = O(1 + Tv/B) I/Os (Theorem 10). Note
that as in the interval tree case, we can update the B2–structure in O(1) I/Os using an “update
block” and global rebuilding. In a leaf u of T we store the points with x-coordinates among the
x-coordinates in u that are not stored further up the tree; assuming without loss of generality
that all x-coordinate are distinct, we can store these points in a single block. Overall the external
priority search tree uses O(N/B) space, since T uses linear space and since every point is stored
in precisely one B2–structure.

Query. To answer a 3-sided query q = (q1, q2, q3) we start at the root of T and proceed
recursively to the appropriate subtrees: When visiting a node v we first query the B 2–structure

20

vvvvv

q

q

q
54321

3

1 2

(a) (b)

Figure 16: a) Internal node v with children v1, v2, . . . , v5. The points in bold are stored in the
B2–structure. To answer a 3-sided query q = (q1, q2, q3, q4) we report the relevant of the O(B2)
points and answer the query recursively in v2, v3, and v5. The query is not extended to v4 because
not all of the points from v4 in the B2–structure is in q. (b) The Θ(B2) (small) points stored in a
node v and Θ(B) (big) points stored in parent(v) corresponding to v. O(B) new points is needed
in parent(v) when v splits an a new slab boundary is inserted in parent(v).

and report the relevant points. Then we advance the search to some of the children of v. The
search is advanced to a child vi if it is either along the search path for q1 or the search path for
q2, or if the entire set of points corresponding to vi in the B2–structure were reported—refer to
Figure 16(a). The query procedure reports all points in the query range since if we do not visit
child vi corresponding to a slab completely spanned by the interval [q1, q2], it means that at least
one of the points in the B2–structure corresponding to vi is not in q. This in turn means that none
of the points in the subtree rooted at vi can be in q.

That we use O(logB N + T/B) I/Os to answer a query can be seen as follows. In each internal
node v of T visited by the query procedure we spend O(1+Tv/B) I/Os, where Tv is the number of
points reported. There are O(logB N) nodes visited on the search paths in T to the leaf containing q1

and the leaf containing q2, and thus the number of I/Os used in these nodes adds up to O(logB N +
T/B). Each remaining visited internal node v in T is not on the search paths but it is visited
because Θ(B) points corresponding to v were reported in its parent. Thus the cost of visiting these
nodes adds up to O(T/B), even if we spend a constant number of I/Os in some nodes without
finding Θ(B) points to report.

Updates. To insert or delete a point p = (x, y) in the external priority search tree, we first
insert or delete x from the base tree T . If we are performing an insertion we then update the
secondary structures using the following recursive bubble-down procedure starting at the root v:
We first find the (at most) B points in the B2–structure of v corresponding to the child vi whose
x-range Xvi contains x; we find these points simply by performing the (degenerate) 3-sided query
defined by Xvi and y = −∞ on the B2–structure. If p is below these points (and there are B of
them), we recursively insert p in vi. Otherwise, we insert p in the B2–structure. If this means that
the B2–structure contains more than B points corresponding to vi, we delete the lowest of these
points (which can again be identified by a simple query) and insert it recursively in vi. If v is a leaf,
we simply store the point in the associated block. If we are performing a deletion we first identify
the node v containing p by searching down T for x while querying the B2–structure for the (at
most) B points corresponding to the relevant child vi. Then we delete p from the B2–structure.
Since this decreases the number of points from Xvi stored in v, we promote a point from vi using a
recursive bubble-up procedure: We first find the topmost point p′ (if existing) stored in vi using a
(degenerate) query on its B2–structure. Then we delete p′ from the B2–structure of vi and insert it

21

in the B2–structure of v. Finally, we recursively promote a point from the child of vi corresponding
to the slab containing p′. Thus we may end up promoting points along a path to a leaf; at a leaf we
simply load the single block containing points in order to identify, delete, and promote the relevant
point.

Disregarding the update of the base tree T , an update is performed in O(logB N) I/Os amor-
tized: We search down one path of T of length O(logB N) and in each node we perform a query
and a constant number of updates on a B2–structure. Since we only perform queries that return
at most B points, each of them takes O(logB B2 + B/B) = O(1) I/Os (Theorem 4). Each update
also takes O(1) I/Os amortized.

The update of the base tree T also takes O(logB N) I/Os (Theorem 3), except that we have to
consider what happens to the secondary B2–structures when we perform a rebalancing operation
(split or fuse) on a base tree node v. As discussed in Section 6, when v is split into v ′ and v′′

along a boundary b, all slabs on one side of b gets associated with v ′ and all slabs on the other side
with v′′, and b becomes a new slab boundary in parent(v). Refer to Figure 12. The B2–structures
of v′ and v′′ then simply contains the relevant of the points that were stored in the B2–structure
of v. However, since the insertion of b in parent(v) splits a slab into two, the B 2–structure of
parent(v) now contains B too few points. Refer to Figure 16(b). Thus we need to promote (a
most) B points from v′ and v′′ to parent(v). We can do so simply by performing O(B) bubble-up
operations. Since we can construct the B2–structures of v′ and v′′ in O(B) I/Os, and perform
the O(B) bubble-up operations in O(B logB w(v)) (because the height of the tree rooted in v is
O(logB w(v))), we can in total perform a split in O(B logB w(v)) = O(w(v)) I/Os. By Theorem 3,
we know that when performing a split on v (during an insertion) Ω(w(v)) updates must have been
performed below v since it was last involved in a rebalance operation. Thus the amortized cost of a
split is O(1) I/Os and thus an insertion is performed in O(logB N) I/Os amortized. As previously,
we can handle deletes on T in a simple way using global rebuilding rather than fusion of nodes:
To delete an x-coordinate we simply mark it as deleted in the relevant leaf of T and periodically
rebuild the structure. Let N0 be the number of points in the structure just after a rebuild. After
N0/2 deletions we rebuild the structure in O(N0 logB N0) = O(N logB N) I/Os. This way the query
bound is maintained and we obtain an O(logB N) amortized delete I/O bound.

Theorem 11 An external priority search tree on a set of N points in the plane uses O(N/B)
space and answers 3-sided range queries in O(logB N + T/B) I/Os. Updates can be performed in
O(logB N) I/Os amortized.

Remarks The internal memory priority search tree was developed by McCreight [62]. The ex-
ternal priority search tree was described by Arge et al. [19], following earlier attempt by several
authors [67, 73, 28, 54]. They also showed several ways of removing the amortization from the
update bounds. Note how the structure uses many of the ideas already utilized in the development
of the external interval tree structure in Section 6: Bootstrapping using a static structure, filtering,
and a weight-balanced B-tree.

8 General planar orthogonal range searching

After discussing 2- and 3-sided planar range searching, we are now ready to consider general (4-
sided) orthogonal range searching. Given a set of points S in the plane we want to be able to
find all points contained in an axis-aligned query rectangle. While linear space and O(logB N +

22

T/B) query structures exist for 2- and 3-sided queries, it turns out that in order to obtain an
O(logB N + T/B) query bound for the general case we have to use Ω(N

B
logB N

logB logB N) space. We
describe the external range tree obtaining these bounds in Section 8.1. In practical applications
involving massive datasets it is often crucial that external data structures use linear space. In that
case we need Ω(

√

N/B + T/B) I/Os to answer a query. We describe the O-tree obtaining these
bounds in Section 8.2.

8.1 External range tree

Structure. An external range tree on a set of points S in the plane consists of a base weight-
balanced B-tree T with branching parameter 1

4 logB N and leaf parameter B on the x-coordinates
of the points. As previously, an x-range Xv is associated with each node v and it is subdivided
into Θ(logB N) slabs by v’s children. We store all the points from S in Xv in four secondary data
structures associated with v. The first two structures are priority search trees for answering 3-sided
queries—one for answering queries with opening to the left and one for queries with opening to
the right. The third structure is a B-tree on the points sorted by y-coordinate. For the fourth
structure, we imagine for each child vi linking together the points in Xvi in y-order, producing a
polygonal line monotone with respect to the y-axis. We project all the segments produced in this
way onto the y-axis and store them in an external interval tree. Refer to Figure 17(a). With each
segment endpoint in Xvi we also store a pointer to the same point in the B-tree of the child node
vi.

Since we use linear space on each of the O(loglogB N (N/B)) = O(logB N/ logB logB N) levels of
the tree, the structure uses O(N

B
logB N

logB logB N) space in total.

(b)(a)

���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������

���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������

logB N logB N

q2

vi vj

q4

q1

q3

Figure 17: a) The slabs corresponding to a node v in the base tree and the segments projected onto
the y-axis and stored in an interval tree. (b) A query q = (q1, q2, q3, q4) is naturally decomposed
into a part in Xvi , a part in Xvj , and a part that spans all slabs Xvk

for i < k < j.

Query. To answer a 4-sided query q = (q1, q2, q3, q4) we first find the topmost node v in the
base tree T where the x-range [q1, q2] of the query contains a slab boundary. Consider the case
where q1 lies in the x-range Xvi of vi and q2 lies in the x-range Xvj of vj . The query q is naturally
decomposed into three parts, consisting of a part in Xvi , a part in Xvj , and a part completely
spanning slabs Xvk

, for i < k < j; refer to Figure 17(b). We find the points contained in the first
two parts in O(logB N + T/B) I/Os using the right opening 3-sided structure associated with vi

and the left opening 3-sided structure associated with vj . To find the points in the third part we

23

Figure 18: Change of intervals when new boundary is inserted in parent(v) when v splits.

query the interval tree associated with v with the y-value q3. This way we obtain the O(logB N)
segments in the structure containing q3, and thus (a pointer to) the bottommost point contained
in the query for each of the nodes vi+1, vi+2, . . . , vj−1. We then traverse the relevant leaves of the
j − i − 1 = O(logB N) relevant B-tree and output the remaining points using O(logB N + T/B)
I/Os. Thus overall the query q is answered in O(logB N + T/B) I/Os.

Updates. To insert a point in or delete a point from the external range tree we first update the
base tree T ; below we discuss how to do so. Then we perform O(1) updates using O(logB N) I/Os
each in the secondary structures of the O(logB N/ logB logB N) nodes on the path from the root of
T to the leaf containing the point, for a total of O(log2

B N/ logB logB N) I/Os.
As previously, we update the base tree T during a deletion using global rebuilding: When

deleting a point (x-coordinate) we simply mark it as deleted in a leaf. If N0 was the number of
points in the structure when it was last rebuilt, we then rebuild it again after N0/2 deletes. Since a
secondary structure (B-tree, interval tree, or priority search tree) on the w(v) points in the x-range
Xv of a node v can easily be constructed in O(w(v) logB N0) I/Os using repeated insertion, the
structure is constructed in O(N0 logB N0 · logB N0/ logB logB N0) I/Os or O(log2

B N/ logB logB N)
I/Os amortized.

Insertions in the base tree T are also relatively easy to handle, since each node stores all points
in its x-range (that is, each point is stored on each level of T). When rebalancing a node v during
an insertion, that is, splitting it into v ′ and v′′, we simply split the w(v) points in v into two
sets and construct the secondary structures for the two new nodes using O(w(v) logB N) I/Os. A
discussed in Section 6 and 7, the split introduces a new boundary in parent(v). This effects the
interval tree of parent(v), since the O(w(v)) intervals generated from the points in Xv change.
Refer to Figure 18. The other structures remain unchanged. We can easily update the interval
tree in parent(v) in O(w(v) logB N) I/Os, simply by deleting the O(w(v)) superfluous intervals and
inserting the O(w(v)) new ones generated as a result of the split. This takes O(w(v) logB N) I/Os
in total. Since Ω(w(v)) updates must have been performed below v since it was last involved in a
rebalance operation (Theorem 3), the amortized cost of a split is O(logB N) I/O. Thus an insertion
is also performed in O(log2

B N/ logB logB N) I/Os amortized.

Theorem 12 An external range tree on a set of N points in the plane uses O(N
B

logB N
logB logB N) space

and answers orthogonal range queries in O(logB N + T/B) I/Os. Updates can be performed in
O(log2

B N/ logB logB N) I/Os amortized.

Remarks. The external range tree is adopted from the internal range tree due to Chazelle [31].
Subramanian and Ramaswamy [73] were the first to attempt to externalize this structure. Based on

24

a sub-optimal linear space structure for answering 3-sided queries they developed the P-range tree
that uses O(N

B
logB N

logB logB N) space but slightly more than O(logB N + T/B) I/Os to answer a query.

Using their optimal structure for 3-sided queries, Arge et al. [19] obtained the structure described
above. Subramanian and Ramaswamy [73] proved that one cannot obtain an O(logB N + T/B)
query bound using less than Θ(N

B
logB N

logB logB N) disk blocks, that is, that the external range tree is
optimal. In fact, this lower bound even holds for a query bound of O(logc

B N + T/B) for any
constant c ≥ 1. It holds in a natural external memory version of the pointer machine model [32].
A similar bound in a slightly different (stronger) model where the search component of the query
is ignored was proved by Arge et al. [19]. This indexability model was defined by Hellerstein et
al. [52] and considered by several authors [55, 59, 71, 20].

8.2 O-tree

In this section we describe the linear space O-tree that supports range queries in O(
√

N/B +T/B)
I/Os. We start by, in Section 8.2.1, describing the external kd-tree, which is an externalization of
the internal memory kd-tree. This structure actually supports queries in O(

√

N/B + T/B) I/Os
but updates require O(log2

B N) I/Os. The O-tree, described in Section 8.2.2, improves the update
bound to O(logB N) utilizing the external kd-tree.

8.2.1 External kd-tree

Structure. An internal memory kd-tree T on a set S of N points in the plane is a binary tree of
height O(log2 N) with the points stored in the leaves of the tree. The internal nodes represent a
recursive decomposition of the plane by means of axis-orthogonal lines that partition the set of, say,
N ′ points below a node into two subsets of approximately equal size bN ′/2c and dN ′/2e. On even
levels of T we use horizontal dividing lines and on odd levels vertical dividing lines. In this way
a rectangular region Rv is naturally associated with each node v and the nodes on any particular
level of T partition the plane into disjoint regions. In particular, the regions associated with the
leaves represent a partition of the plane into rectangular regions containing one point each. Refer
to Figure 19.

y10y9y8y6y5y4y3

x3x2 x5

y2y1

x4

y7

x1

x1x2

x5

x4

x3

y8

y3

y1

y5

y4

y6

y7

y10

y2

y9

Figure 19: A kd-tree and the corresponding partitioning.

A (static) external memory kd-tree is simply a kd-tree T where we stop the recursive partition
when the number of point in a region falls below B. This way the structure has O(N/B) leaves
containing between bB/2c and B points each. We store the points in each leaf together in a disk
block. Since the number of internal nodes is O(N/B), the structures uses O(N/B) blocks regardless

25

of how we store these nodes on disk. However, in order to be able to follow a root-leaf path in
O(logB N) I/Os, we block the internal nodes of T in a way similar to a B-tree: Starting at the root
we visit nodes in breadth-first order until we have visited a subtree consisting of log B − 1 whole
levels of internal nodes. This subtree contains less than 2 · 2log B−1 = B nodes and we can therefore
store it in one disk block. Then we recursively visit and block the O(B) tress rooted below the
subtree; when a subtree has less than log B − 1 levels (contains less than B internal nodes) we
simply store it in a disk block. This way a root leaf path in T of length O(log N

B) is stored in
O(log N

B)/(log B − 1) + 1 = O(logB N) blocks, such that it can be traversed in O(logB N) I/Os.
We can easily construct an external static kd-tree T on a set S of N points in O(N

B log N
B) I/Os:

We first creating two lists of the points in S sorted by x- and y-coordinates, respectively. Then we
create the root of T using O(N/B) I/Os, simply by scanning the list sorted by y-coordinates and
computing the horizontal median split. After this we partition the two sorted lists according to this
median, and recursively construct the rest of the tree. After having constructed the tree we can
block the O(N/B) internal nodes in O(N/B) I/Os using a simple recursive depth-first traversal of
the tree.

Query. A point query on S, that is, a search for a given point, can obviously be answered in
O(logB N) I/Os by following one root-leaf path in T . A range query q = (q1, q2, q3, q4) can be
answered with a simple recursive procedure starting at the root: At a node v we advance the query
to a child w if q intersects the region Rw associated with w. At a leaf u we return the points in u
contained in q.

To bound the number of node in T visited when answering a range query q, or equivalently,
the number of nodes v where Rv intersects q, we first bound the number of nodes v where Rv

intersects a vertical line l. The region Rr associated with the root r is obviously intersected
by l, but as the regions associated with its two children represent a subdivision of Rr with a
vertical line, only the region Rw associated with one of these children w is intersected. Because
the region Rw is subdivided by a horizontal line, the regions associated with both children of w
are intersected. Let L = O(N/B) be the number of leaves in the kd-tree. As the children of
w are roots in kd-trees with L/4 leaves, the recurrence for the number of regions intersected by
l is Q(L) ≤ 2 + 2Q(L/4) = O(

√
L) = O(

√

N/B). Similarly, we can show that the number of
regions intersected by a horizontal line is O(

√

N/B). This means that the number of nodes v
with regions Rv intersected by the boundary of q is O(

√

N/B). All the additional nodes visited
when answering q correspond to regions completely inside q. Since each leaf contains Θ(B) points
there are O(T/B) leaves with regions completely inside q. Since the region Rv corresponding to an
internal node v is only completely contained in q if the regions corresponding to the leaves below v
are contained in q (and since the kd-tree is binary), the total number of regions completely inside q
is also O(T/B). Thus in total O(

√

N/B+T/B) nodes are visited and therefore a query is answered
in O(

√

N/B + T/B) I/Os.

Theorem 13 A static external kd-tree for storing a set of N points in the plane uses linear space
and can be constructed in O(N

B log N
B) I/Os. It supports point queries in O(logB N) I/Os and

orthogonal range query in O(
√

N/B + T/B) I/Os.

Updates. We first consider the case where we only want to support insertions. We do so using
the so-called logarithmic method : We maintain a set of O(log2 N) static kd-trees T0, T1, . . . , such
that Ti is either empty or has size 2i. We perform an insertion by finding the first empty structure
Ti, discarding all structures Tj, j < i, and building Ti from the new point and the

∑i−1
l=0 2l = 2i − 1

26

points in the discarded structures using O(2i

B log 2i

B) I/Os (Theorem 13). If we divide this cost
between the 2i points, each of them is charged O(1

B log N
B) I/Os. Because points never move from

higher to lower indexed structures, we charge each point O(log N) times. Thus the amortized cost
of an insertion is O(1

B log N
B log N) = O(log2

B N) I/Os.
To answer a query we simply query each of the O(log N) structures. In general, querying Ti

takes O(1+
√

2i/B+Ti/B) I/Os, where Ti is the number of reported points. However, if we keep the
first log B structures in memory, using O(1) blocks of main memory, we can query these structures
without performing any I/Os. Thus in total we use

∑log N
i=log B O(

√

2i/B+Ti/B) = O(
√

N/B+T/B)
I/Os to answer a query.

Next we also consider deletions. We first describe how we can modify the static external kd-tree
(Theorem 13) to support deletions efficiently: To delete a point p, we first perform a point query
on T to find the leaf u containing p. Next we simply remove p from u. If the number of points in u
falls to B/4 we then rebuild the kd-tree rooted in the parent v of u (what we call a local rebuilding);
note that after a number of rebuildings, v can be root in a very large kd-tree. During the rebuild
we store the internal nodes in the rebuilt structure in the same blocks as were previously used for
the subtree rooted in v. In particular, we may store v (and a cirtain number of levels of nodes
below v) in a block also containing some of v ancestors. Finally, we also periodically rebuild the
entire structure (global rebuilding): If N0 is the number of points in the structure just after the last
complete rebuild, we rebuild the structure again after N0/2 deletions.

The delete algorithm ensures that the linear space bound and the O(logB N) point query and
O(

√

N/B + T/B) range query performance is maintained: The global rebuilding ensures that
the space bound remains O(N0/B) = O(N/B) and that the recurrence for the number of nodes
corresponding to regions intersected by a vertical line remains Q(L) ≤ 2 + 2Q(L/4) = O(

√
L) =

O(
√

N0/B) = O(
√

N/B); the local rebuilding ensures that each leaf always contain Θ(B) points
(between B/4 and B) and thus that the number of nodes corresponding to regions completely
inside a query q remains O(T/B). This way the range query bound is maintained. The use of the
original blocking of internal nodes of the tree during local rebuildings ensure that the point query
bound is maintained.

The amortized number of I/Os needed to perform a deletion on an extenal kd-tree T is
O(log2

B N): The search for p requires O(logB N) I/Os. The global rebuilding every N0/2 dele-
tions is performed in O(N0

B log N0
B) I/Os, or O(1

B log N0
B) = O(logB N) I/Os amortized. When local

rebuilding is performed on a node v, one of v children w is a leaf containing B/4 points. This means
that all but B/4 of the original points stored below w—and thus all but B/4 of half of the original
points below v—have been deleted since v was constructed (during a local or global rebuild). Since
the number of points below v was at least 2B

2 = B at that time, the number of deleted points
is proportional to the number of original points below v. Amortized each deleted point therefore
contribute O(1

B log N0
B) I/Os to the local rebuilding. Since each points contributes on each of the

O(log N0
B) levels of the tree, the total amortized cost is O(1

B log2 N0
B) = O(log2

B N) I/Os.
Finally, we describe how to support both insertions and deletions. To delete a point p from the

external kd-tree supporting insertions using the logarithmic method, we simply delete p from the
relevant Ti using the algorithm described above. We globally rebuild the entire structure after every
N0/2 deletes, such that the number of structures remains O(log N). This ensures that a range query
can still be answered in O(

√

N/B + T/B) I/Os. We ignore deletions in terms of the logarithmic
method, that is, we destroy and reconstruct structures Ti as if no deletions were taking place. This
way, points still only move from lower to higher index structures, which ensures that the amortized

27

insertion cost remains O(log2
B N). Regarding deleted points as still being present in terms of the

logarithmic method also lets us efficiently find the structure Ti containing a point p to be deleted.
We simply maintain a separate B-tree Td on the points in the structure. For point p, Td stores how
many points were inserted since the last global rebuild when p was inserted. Maintenance of Td

adds O(logB N) I/Os to the insertion bound. To find the structure Ti containing a given point p,
we query Td with p using O(logB N) I/Os. A simple calculation, based on the obtained information
and the current number of elements inserted since the last global rebuilding, then determines i.
After that p can be deleted in O(log2

B N) I/Os.

Theorem 14 An external kd-tree for storing a set of N points in the plane uses linear space and
can be constructed in O(N

B log N
B) I/Os. It supports point queries in O(logB N) I/Os, orthogonal

range query in O(
√

N/B + T/B) I/Os, and updates in O(log2
B N) I/Os amortized.

8.2.2 O-tree structure

After describing the external kd-tree we are now ready to describe the O-tree with an improved
O(logB N) update bound.

Structure. Consider dividing the plane into slabs using Θ(
√

N/B/ logB N) vertical lines such
that each slab contains between 1

2

√
NB logB N and

√
NB logB N points from S. Each of these

slabs are further divided into cells using Θ(
√

N/B/ logB N) horizontal lines such that each cell
contains between 1

2B log2
B N and B log2

B N points. Refer to Figure 20(a). The O-tree consist of a
B-tree Tv (with leaf and branching parameter B) on the vertical lines, a B-tree Ti (with leaf and
branching parameter B) in each slab si on the horizontal lines in si, and an external kd-tree on the
points in each cell; the kd-tree in the j’th cell in slabs si is called Tij. Refer to Figure 20(b).

(a) (b)

���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������

���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������
���������������������

B−tree

B−trees

kd−trees

p

N/B/ logB N slabs

B log2
B N pointsq2

sr

q4

q3

sl

q1

Figure 20: a) Division of plane into cells containing Θ(B log2
B N) points using Θ(

√

N/B logB N)
vertical lines and Θ(

√

N/B logB N) horizontal lines in each slab. (b) O-tree: B-tree on vertical lines,
B-tree on horizontal lines in each slab, and kd-tree on points in each cell. A query q = (q1, q2, q3, q4)
is answered by querying all kd-trees in cells in slabs sl and sr containing q1 and q2, as well as all
kd-trees in cells intersected by [q3, q4] in slabs spanned by [q1, q2].

The O-tree uses linear space: The B-trees use O((
√

N/B/ logB N)2/B) = O(N/(B logB N)2)
space in total (Theorem 1) and each point is store in exactly one linear space kd-tree (Theorem 14).
We can easily construct the structure in O(N

B log N
B) I/Os: We first compute the vertical lines

28

bacically by sorting the points in S by x-coordinates using O(N
B logM/B

N
B) I/Os. Then we construct

Tv in the same bound (Theorem 2). We compute the horizontal lines and construct Ti in each slab
si in O(N

B logM/B
N
B) I/Os in total in a similar way. Finally we construct the kd-tree in all cells in

O(N
B log N

B) I/Os in total (Theorem 14).
Query. A point query on S, that is, a search for a given point p, can easily be answered in

O(logB N) I/Os by performing a search in Tv, followed by a search in one Ti, and finally a search
in one kd-tree Tij (Corollary 1 and Theorem 14). To answer a range query q = (q1, q2, q3, q4), we
first perform a query on Tv to find the O(

√

N/B/ logB N) slabs intersected by the x-range [q1, q2]
of q. If q1 is in slab sl and q2 in slab sr we then query all kd-trees Tlj and Trj in slabs sl and sr to
find all points in these slabs in q. The remaining points in q are all in one of the slabs si, l < i < r,
completely spanned by [q1, q2]. In each such slab si we query Ti to find the O(

√

N/B/ logB N) cells
intersected by the y-range [q3, q4] of q. Then we query the kd-tree Tij for each of these cells to find
all points in si in q. Refer to Figure 20.

That we answer a range query in O(
√

N/B + T/B) as on a external kd-tree can be seen
as follows (using Corollary 1 and Theorem 14): The query on B-tree Tv is performed in
O(logB(

√

N/B/ logB N) +
√

N/B/(B logB N)) = O(
√

N/B), since we know the output from the
query is of size O(

√

N/B/ logB N). Querying the 2 · O((
√

N/B/ logB N) kd-trees in slab sl and

sr takes O((
√

N/B/ logB N) ·O(
√

B log2
B N)/B) + O(T/B) = O(

√

N/B + T/B) I/Os. The query

on B-trees Ti in the O(
√

N/B/ logB N) slabs si completely spanned by the x-range [q1, q2] takes
O(

√

N/B/ logB N) · O(logB(
√

N/B/ logB N) + O(T/B) = O(
√

N/B + T/B), since we know that
the combined output size for all the queries is O(T +

√

N/B/ logB N) (because all but 2 reported
cells in each slab si is completly contained in q). Finally, the total number of I/Os required to query
the kd-trees Tij in cells intersected by the y-range [q3, q4] in all slabs si completely spanned by the

x-range [q1, q2] is 2 ·O(
√

N/B/ logB N) ·O(
√

B log2
B N)/B) + O(T/B) = O(

√

N/B + T/B), since

we know that all points are reported in all but two cells in each of the O(
√

N/B/ logB N) slabs (i.e.
the query-term in the query bound is dominated by the output term in all but 2·O(

√

N/B/ logB N)
kd-trees).

Updates. We utilize a global rebuilding strategy to update the O-tree efficiently: If N0 is the
number of points in the structure just after rebuilding it, we rebuild it again after N0/2 updates
using O(N0

B log N0
B) I/Os or O(1

B log N0
B) = O(logB N) I/Os amortized. By allowing the number

of points in each slab to vary between 1
4

√
N0B logB N0 and 5

4

√
N0B logB N0 and in each cell be-

tween 1
4B log2

B N0 and 5
4B log2

B N0, we can then update the O-tree in O(logB N) I/Os amortized
as described below.

To insert a point p we first perform a point query to find the cell (kd-tree Tij) containing p. Then
we insert p in Tij. If the cell containing p now contains more than 5

4B log2
B N0 points we simply split

it into two cells containing approximately 5
8B log2

B N0 points each using a horizontal line, remove the
kd-tree for the old cell, and construct two new kd-trees for the two new cells. We also insert the new
horizontal line in the B-tree Ti for the slab si containing p. Similarly, if slab si now contains more
than 5

4

√
N0B logB N0 points we split it into two slabs containing approximately 5

8

√
N0B logB N0

points each using a vertical line, insert the line in Tv, and use Θ(
√

N0/B/ logB N0) horizontal lines
in each new slab to construct new cells containing between 1

2B log2
B N0 and B log2

B N0 points each;
we discard the B-trees Ti on the horizontal lines in the old slab and create two new B-trees for the
two new slabs, and finally we construct a kd-tree on the points in each of the new cells.

To delete a point p we also first perform a point query to find the relevant kd-tree Tij (cell

29

containing p). Then we delete p from Tij. If the cell now contains less than 1
4B log2

B N0 points
we merge it with one of its neighbors: We remove the kd-trees for the two cells and collect the
between 1

2B log2
B N0 and 6

4B log2
B N0 points in the cells; we also delete the horizontal splitting line

between the cells from the B-tree Ti of the slab si containing p. If the number of collected points is
between 1

2B log2
B N0 and B log2

B N0 we then simply construct one new kd-tree for the new (merged)
cell. Otherwise we split the set of points in two with a horizontal line, that is, we split the new
cell in two cells containing between 1

2B log2
B N0 and 3

4B log2
B N0 points, insert the horizontal line

in Ti, and construct two new kd-trees. Similarly, if the slab si containing p now contains less than
1
4

√
N0B logB N0 points we merge it with one of its neighbors: We delete the vertical splitting line

between the two slabs from Tv, delete the B-trees containing the horizontal lines from the two
slabs, and remove all the kd-trees for the two slabs while collecting the between 1

2

√
N0B logB N0

and 6
4

√
N0B logB N0 points. If the number of collected points is between 1

2

√
N0B logB N0 and√

N0B logB N0 we simply use Θ(
√

N0/B/ logB N0) horizontal lines in the (merged) slab to construct
new cells containing between 1

2B log2
B N0 and B log2

B N0 points each; we create a new B-tree on the
lines for the slab, and construct a kd-tree for each of the new cells. Otherwise we first use a vertical
split line to construct two new slabs containing between 1

2

√
N0B logB N0 and 3

4

√
N0B logB N0

points each, insert the line in Tv, and in each slab construct Θ(
√

N0/B/ logB N0) cells (B-tree and
kd-trees) containing between 1

2B log2
B N0 and B log2

B N0 points as above.
That the update algorithms use O(logB N) I/Os amortized can be seen as follows (using Corol-

lary 1 as well as Theorems 1 and 14): The initial point query takes O(logB N0) = O(logB N)
I/Os. In the case where no cell or slab becomes too large or small the update is then finished
with an update on an external kd-tree using O(log2

B(B log2
B N0) = O(logB N) I/Os. If a cell be-

comes too large or small (contains less than 1
4B log2

B N0 or more than 5
4B log2

B N0 points) and
we perform O(1) splits or merges, we in total perform O(1) of updates on a B-trees Ti in slabs
si using O(logB(

√

N0/B/ logB N0)) = O(logB N0) I/Os, and remove and construct of O(1) kd-

trees of size O(B log2
B N0) using O(

B log2
B N0

B log
B log2

B N0

B) = O(log2
B N0 · log log2

B N0) I/Os. Since a
newly created cell always contains between 1

2B log2
B N0 and B log2

B N0 points, the amortized up-

date bound is therefore O(log2
B N0 · log log2

B N0)/(
1
4B log2

B N0) = O(
log log2

B N0

B) = O(logB N). If a
slab becomes too large or small (contains less than 1

4

√
N0B logB N0 or more than 5

4

√
N0B logB N0

points) and we perform O(1) splits or merges of slabs, we in total perform O(1) updates on B-
tree Tv using O(logB(

√

N0/B/ logB N0) = O(logB N) I/Os. We also remove and construct O(1)

B-trees Ti in slabs Si using O(

√
N0/B/ logB N0

B logM/B

√
N0/B/ logB N0

B) = O(

√
N0/B/ logB N0

B logB N0)

I/Os, and remove and construct O(
√

N0/B/ logB N0) kd-trees of size O(B log2
B N0) each using

O(
√

N0/B/ logB N0) · O(log2
B N0 · log log2

B N0) I/Os; the last bound dominates the first. Since a
newly created slab always contains between 1

2

√
N0B logB N0 and

√
N0B logB N0 points, the amor-

tized update bound is therefore O(
√

N0/B/ logB N0) · (log2
B N0 · log log2

B N0)/(
1
4

√
N0B logB N0) =

O(
log log2

B N0

B) = O(logB N). The O(logB N) bound follows since an update is charged at most twice
in the amortization argument (in a slab and a cell).

Theorem 15 An O-tree for storing a set of N points in the plane uses linear space and supports
point queries in O(logB N) I/Os, orthogonal range query in O(

√

N/B + T/B) I/Os, and updates
in O(logB N) I/Os amortized.

Remarks. The internal memory kd-tree was developed by Bentley [26]. The static external ver-
sion presented here is similar to the static version of the kdB-tree of Robinson [68], and the dynamic

30

version is similar to the Bkd-tree of Agarwal et al. [66]. Several other dynamic external versions
of the kd-tree (without worst-case performance guarantees) have been proposed (e.g. [68, 61, 42];
see also [70]). The logarithmic method was introduced by Bentley [27] (see also [65]). The external
kd-tree update bounds can be improved slightly using an improved O(N

B logM/B
N
B) construction

algorithm due to Agarwal et al. [66, 5] and an external version of the logarithmic method (where
O(logB N) rather than O(log N) structures are maintained) due to Arge and Vahrenhold [21].
The amortized update bounds can also be made worst-case using standard lazy-rebuilding tech-
niques [65].

The O-tree is due to Kanth and Singh [56]. The ideas used in the structure is similar to the
ones utilized by van Kreveld and Overmars [76] in divided k-d trees. As for the external kd-tree,
the O-tree construction bound (and thus exact update bounds) can be improve slightly and the
amortized bounds can be made worst-case. The O-tree described here is slightly different than the
structure of Kanth and Singh [56]. Grossi and Italiano [50, 51] developed a structure called a cross-
tree obtaining the same bounds as the O-tree. The external kd-tree, the O-tree and the cross-tree
can all be extended to d-dimensions in a straightforward way obtaining a O((N/B)1−1/d + T/B)
query bound. These bounds are optimal for data structures that only store one copy of each data
point [56, 9].

9 Conclusions

In this note we have discussed some of the recent advances in the development of provably efficient
dynamic external memory data structures for one- and two-dimensional orthogonal range searching.
We have discussed some of the most important techniques utilized to obtain efficient structures.

Even though a lot of progress has been made, many problems still remain open. For example,
O(logB N)-query and space efficient structures still need to be found for many higher-dimensional
problems. The practical performance of many of the worst-case efficient structures also needs to
be researched.

Remarks. While this note only covers a few structures for one- and two-dimensional orthogonal
range searching, a large number of worst-case efficient data structures for other (and often more
complicated) problems have also be developed in recent years. These include structures for three-
and higher-dimensional orthogonal range searching [78, 79, 50, 51, 56], variants such as rang count-
ing, max, and stabbing queries [48, 82, 7, 20, 8], for halfspace range searching [45, 3, 2], for queries
on moving objects [58, 2, 6, 4], for closest pair and nearest neighbor queries [30, 49, 2, 3], point
location queries [47, 22, 18, 37, 74, 21, 1, 14], and for rectangle range searching [38, 9, 15]. This
list is not meant to be exhaustive.

Acknowledgments

This work was supported in part by the US National Science Foundation through RI grant EIA–
9972879, CAREER grant CCR–9984099, ITR grant EIA–0112849, and U.S.-Germany Cooperative
Research Program grant INT–0129182, by the US Army Research Office through grant W911NF-
04-1-0278, and by an Ole Rømer Scholarship from the Danish National Science Research Council.

31

References

[1] P. K. Agarwal, L. Arge, G. S. Brodal, and J. S. Vitter. I/O-efficient dynamic point location
in monotone planar subdivisions. In Proc. ACM-SIAM Symposium on Discrete Algorithms,
pages 1116–1127, 1999.

[2] P. K. Agarwal, L. Arge, and J. Erickson. Indexing moving points. Journal of Computer and
System Sciences, 66(1):207–243, 2003.

[3] P. K. Agarwal, L. Arge, J. Erickson, P. Franciosa, and J. Vitter. Efficient searching with linear
constraints. Journal of Computer and System Sciences, 61(2):194–216, 2000.

[4] P. K. Agarwal, L. Arge, J. Erickson, and H. Yu. Efficient tradeoff schemes in data structures
for querying moving objects. In Proc. European Symposium on Algorithms, LNCS 3221, pages
4–15, 2004.

[5] P. K. Agarwal, L. Arge, O. Procopiuc, and J. S. Vitter. A framework for index bulk loading and
dynamization. In Proc. International Colloquium on Automata, Languages, and Programming,
LNCS 2076, pages 115–127, 2001.

[6] P. K. Agarwal, L. Arge, and J. Vahrenhold. A time responsive indexing scheme for moving
points. In Proc. Workshop on Algorithms and Data Structures, LNCS 2076, pages 50–61, 2001.

[7] P. K. Agarwal, L. Arge, J. Yang, and K. Yi. I/O-efficient structures for orthogonal range max
and stabbing max queries. In Proc. European Symposium on Algorithms, LNCS 2832, pages
7–18, 2003.

[8] P. K. Agarwal, L. Arge, and K. Yi. An optimal dynamic interval stabbing-max data structure?
In Proc. ACM-SIAM Symposium on Discrete Algorithms, pages 803–812, 2005.

[9] P. K. Agarwal, M. de Berg, J. Gudmundsson, M. Hammer, and H. J. Haverkort. Box-trees and
R-trees with near-optimal query time. In Proc. ACM Symposium on Computational Geometry,
pages 124–133, 2001.

[10] P. K. Agarwal and J. Erickson. Geometric range searching and its relatives. In B. Chazelle,
J. E. Goodman, and R. Pollack, editors, Advances in Discrete and Computational Geometry,
volume 223 of Contemporary Mathematics, pages 1–56. American Mathematical Society, 1999.

[11] A. Aggarwal and J. S. Vitter. The Input/Output complexity of sorting and related problems.
Communications of the ACM, 31(9):1116–1127, 1988.

[12] L. Arge. External memory data structures. In J. Abello, P. M. Pardalos, and M. G. C. Resende,
editors, Handbook of Massive Data Sets, pages 313–358. Kluwer Academic Publishers, 2002.

[13] L. Arge. The buffer tree: A technique for designing batched external data structures. Algo-
rithmica, 37(1):1–24, 2003.

[14] L. Arge, A. Danner, and S.-H. Teh. I/O-efficient point location using persistent B-trees. In
Proc. Workshop on Algorithm Engineering and Experimentation, 2003.

32

[15] L. Arge, M. de Berg, H. J. Haverkort, and K. Yi. The priority R-tree: A practically efficient
and worst-case optimal R-tree. In Proc. SIGMOD International Conference on Management
of Data, pages 347–358, 2004.

[16] L. Arge, P. Ferragina, R. Grossi, and J. Vitter. On sorting strings in external memory. In
Proc. ACM Symposium on Theory of Computation, pages 540–548, 1997.

[17] L. Arge, K. H. Hinrichs, J. Vahrenhold, and J. S. Vitter. Efficient bulk operations on dynamic
R-trees. Algorithmica, 33(1):104–128, 2002.

[18] L. Arge, O. Procopiuc, S. Ramaswamy, T. Suel, and J. S. Vitter. Theory and practice of I/O-
efficient algorithms for multidimensional batched searching problems. In Proc. ACM-SIAM
Symposium on Discrete Algorithms, pages 685–694, 1998.

[19] L. Arge, V. Samoladas, and J. S. Vitter. On two-dimensional indexability and optimal range
search indexing. In Proc. ACM Symposium on Principles of Database Systems, pages 346–357,
1999.

[20] L. Arge, V. Samoladas, and K. Yi. Optimal external memory planar point enclosure. In Proc.
European Symposium on Algorithms, LNCS 3221, pages 40–52, 2004.

[21] L. Arge and J. Vahrenhold. I/O-efficient dynamic planar point location. Computational Ge-
ometry: Theory and Applications, 29(2):147–162, 2004.

[22] L. Arge, D. E. Vengroff, and J. S. Vitter. External-memory algorithms for processing line
segments in geographic information systems. Algorithmica, 1998.

[23] L. Arge and J. S. Vitter. Optimal external memory interval management. SIAM Journal on
Computing, 32(6):1488–1508, 2003.

[24] R. Bayer and E. McCreight. Organization and maintenance of large ordered indexes. Acta
Informatica, 1:173–189, 1972.

[25] B. Becker, S. Gschwind, T. Ohler, B. Seeger, and P. Widmayer. An asymptotically optimal
multiversion B-tree. VLDB Journal, 5(4):264–275, 1996.

[26] J. L. Bentley. Multidimensional binary search trees used for associative searching. Communi-
cations of the ACM, 18:509–517, 1975.

[27] J. L. Bentley. Decomposable searching problems. Information Processing Letters, 8(5):244–251,
1979.

[28] G. Blankenagel and R. H. Güting. XP-trees—External priority search trees. Technical report,
FernUniversität Hagen, Informatik-Bericht Nr. 92, 1990.

[29] G. S. Brodal and J. Katajainen. Worst-case efficient external-memory priority queues. In Proc.
Scandinavian Workshop on Algorithms Theory, LNCS 1432, pages 107–118, 1998.

[30] P. Callahan, M. T. Goodrich, and K. Ramaiyer. Topology B-trees and their applications. In
Proc. Workshop on Algorithms and Data Structures, LNCS 955, pages 381–392, 1995.

33

[31] B. Chazelle. Filtering search: a new approach to query-answering. SIAM J. Comput.,
15(3):703–724, 1986.

[32] B. Chazelle. Lower bounds for orthogonal range searching: I. the reporting case. Journal of
the ACM, 37(2):200–212, Apr. 1990.

[33] Y.-J. Chiang and C. T. Silva. I/O optimal isosurface extraction. In Proc. IEEE Visualization,
pages 293–300, 1997.

[34] Y.-J. Chiang and C. T. Silva. External memory techniques for isosurface extraction in scientific
visualization. In J. Abello and J. S. Vitter, editors, External memory algorithms and visualiza-
tion, pages 247–277. American Mathematical Society, DIMACS series in Discrete Mathematics
and Theoretical Computer Science, 1999.

[35] Y.-J. Chiang, C. T. Silva, and W. J. Schroeder. Interactive out-of-core isosurface extraction.
In Proc. IEEE Visualization, pages 167–174, 1998.

[36] D. Comer. The ubiquitous B-tree. ACM Computing Surveys, 11(2):121–137, 1979.

[37] A. Crauser, P. Ferragina, K. Mehlhorn, U. Meyer, and E. Ramos. Randomized external-
memory algorithms for some geometric problems. International Journal of Computational
Geometry & Applications, 11(3):305–337, 2001.

[38] M. de Berg, J. Gudmundsson, M. Hammar, and M. Overmars. On R-trees with low stabbing
number. In Proc. European Symposium on Algorithms, pages 167–178, 2000.

[39] J. R. Driscoll, N. Sarnak, D. D. Sleator, and R. Tarjan. Making data structures persistent.
Journal of Computer and System Sciences, 38:86–124, 1989.

[40] H. Edelsbrunner. A new approach to rectangle intersections, part I. Int. J. Computer Mathe-
matics, 13:209–219, 1983.

[41] H. Edelsbrunner. A new approach to rectangle intersections, part II. Int. J. Computer Math-
ematics, 13:221–229, 1983.

[42] G. Evangelidis, D. Lomet, and B. Salzberg. The hbπ-tree: A multi-attribute index supporting
concurrency, recovery and node consolidation. The VLDB Journal, 6(1):1–25, 1997.

[43] R. Fadel, K. V. Jakobsen, J. Katajainen, and J. Teuhola. Heaps and heapsort on secondary
storage. Theoretical Computer Science, 220(2):345–362, 1999.

[44] P. Ferragina and R. Grossi. A fully-dynamic data structure for external substring search. In
Proc. ACM Symposium on Theory of Computation, pages 693–702, 1995.

[45] P. G. Franciosa and M. Talamo. Orders, k-sets and fast halfplane search on paged memory. In
Proc. Workshop on Orders, Algorithms and Applications , LNCS 831, pages 117–127, 1994.

[46] V. Gaede and O. Günther. Multidimensional access methods. ACM Computing Surveys,
30(2):170–231, 1998.

34

[47] M. T. Goodrich, J.-J. Tsay, D. E. Vengroff, and J. S. Vitter. External-memory computational
geometry. In Proc. IEEE Symposium on Foundations of Computer Science, pages 714–723,
1993.

[48] S. Govindarajan, P. K. Agarwal, and L. Arge. CRB-tree: An efficient indexing scheme for
range-aggregate queries. In Proc. International Conference on Database Theory, pages 143–
157, 2003.

[49] S. Govindarajan, T. Lukovszki, A. Maheshwari, and N. Zeh. I/O-efficient well-separated pair
decomposition and its applications. In Proc. European Symposium on Algorithms, LNCS 1879,
pages 220–231, 2000.

[50] R. Grossi and G. F. Italiano. Efficient cross-tree for external memory. In J. Abello and
J. S. Vitter, editors, External Memory Algorithms and Visualization, pages 87–106. American
Mathematical Society, 1999.

[51] R. Grossi and G. F. Italiano. Efficient splitting and merging algorithms for order decomposable
problems. Information and Computation, 154(1):1–33, 1999.

[52] J. M. Hellerstein, E. Koutsoupias, and C. H. Papadimitriou. On the analysis of indexing
schemes. In Proc. ACM Symposium on Principles of Database Systems, pages 249–256, 1997.

[53] S. Huddleston and K. Mehlhorn. A new data structure for representing sorted lists. Acta
Informatica, 17:157–184, 1982.

[54] C. Icking, R. Klein, and T. Ottmann. Priority search trees in secondary memory. In Proc.
Graph-Theoretic Concepts in Computer Science, LNCS 314, pages 84–93, 1987.

[55] P. C. Kanellakis, S. Ramaswamy, D. E. Vengroff, and J. S. Vitter. Indexing for data models
with constraints and classes. Journal of Computer and System Sciences, 52(3):589–612, 1996.

[56] K. V. R. Kanth and A. K. Singh. Optimal dynamic range searching in non-replicating index
structures. In Proc. International Conference on Database Theory, LNCS 1540, pages 257–276,
1999.

[57] D. E. Knuth. Sorting and Searching, volume 3 of The Art of Computer Programming. Addison-
Wesley, Reading MA, second edition, 1998.

[58] G. Kollios, D. Gunopulos, and V. J. Tsotras. On indexing mobile objects. In Proc. ACM
Symposium on Principles of Database Systems, pages 261–272, 1999.

[59] E. Koutsoupias and D. S. Taylor. Tight bounds for 2-dimensional indexing schemes. In Proc.
ACM Symposium on Principles of Database Systems, pages 52–58, 1998.

[60] V. Kumar and E. Schwabe. Improved algorithms and data structures for solving graph prob-
lems in external memory. In Proc. IEEE Symp. on Parallel and Distributed Processing, pages
169–177, 1996.

[61] D. Lomet and B. Salzberg. The hB-tree: A multiattribute indexing method with good guar-
anteed performance. ACM Transactions on Database Systems, 15(4):625–658, 1990.

35

[62] E. McCreight. Priority search trees. SIAM Journal on Computing, 14(2):257–276, 1985.

[63] J. Nievergelt and E. M. Reingold. Binary search tree of bounded balance. SIAM Journal on
Computing, 2(1):33–43, 1973.

[64] J. Nievergelt and P. Widmayer. Spatial data structures: Concepts and design choices. In
M. van Kreveld, J. Nievergelt, T. Roos, and P. Widmayer, editors, Algorithmic Foundations
of GIS, pages 153–197. Springer-Verlag, LNCS 1340, 1997.

[65] M. H. Overmars. The Design of Dynamic Data Structures. Springer-Verlag, LNCS 156, 1983.

[66] O. Procopiuc, P. K. Agarwal, L. Arge, and J. S. Vitter. Bkd-tree: A dynamic scalable kd-tree.
In Proc. International Symposium on Spatial and Temporal Databases, LNCS 2750, 2003.

[67] S. Ramaswamy and S. Subramanian. Path caching: A technique for optimal external searching.
In Proc. ACM Symposium on Principles of Database Systems, pages 25–35, 1994.

[68] J. Robinson. The K-D-B tree: A search structure for large multidimensional dynamic indexes.
In Proc. SIGMOD International Conference on Management of Data, pages 10–18, 1981.

[69] C. Ruemmler and J. Wilkes. An introduction to disk drive modeling. IEEE Computer,
27(3):17–28, 1994.

[70] H. Samet. The Design and Analyses of Spatial Data Structures. Addison Wesley, MA, 1990.

[71] V. Samoladas and D. Miranker. A lower bound theorem for indexing schemes and its applica-
tion to multidimensional range queries. In Proc. ACM Symposium on Principles of Database
Systems, pages 44–51, 1998.

[72] N. Sarnak and R. E. Tarjan. Planar point location using persistent search trees. Communica-
tions of the ACM, 29:669–679, 1986.

[73] S. Subramanian and S. Ramaswamy. The P-range tree: A new data structure for range
searching in secondary memory. In Proc. ACM-SIAM Symposium on Discrete Algorithms,
pages 378–387, 1995.

[74] J. Vahrenhold and K. H. Hinrichs. Planar point location for large data sets: To seek or not to
seek. In Proc. Workshop on Algorithm Engineering, LNCS 1982, pages 184–194, 2001.

[75] J. van den Bercken, B. Seeger, and P. Widmayer. A generic approach to bulk loading mul-
tidimensional index structures. In Proc. International Conference on Very Large Databases,
pages 406–415, 1997.

[76] M. J. van Kreveld and M. H. Overmars. Divided k-d trees. Algorithmica, 6:840–858, 1991.

[77] P. J. Varman and R. M. Verma. An efficient multiversion access structure. IEEE Transactions
on Knowledge and Data Engineering, 9(3):391–409, 1997.

[78] D. E. Vengroff and J. S. Vitter. Efficient 3-D range searching in external memory. In Proc.
ACM Symposium on Theory of Computation, pages 192–201, 1996.

36

[79] J. S. Vitter. External memory algorithms and data structures: Dealing with MASSIVE data.
ACM Computing Surveys, 33(2):209–271, 2001.

[80] J. S. Vitter and E. A. M. Shriver. Algorithms for parallel memory, I: Two-level memories.
Algorithmica, 12(2–3):110–147, 1994.

[81] D. E. Willard. Reduced memory space for multi-dimensional search trees. In Symposium on
Theoretical Aspects of Computer Science, LNCS 182, pages 363–374, 1985.

[82] D. Zhang, A. Markowetz, V. Tsotras, D. Gunopulos, and B. Seeger. Efficient computation
of temporal aggregates with range predicates. In Proc. ACM Symposium on Principles of
Database Systems, pages 237–245, 2001.

37

